Midply shear wall (hereafter Midply), which was originally developed by researchers at Forintek Canada Corp. (predecessor of FPInnovations) and the University of British Columbia, is a high-capacity shear wall system that is suitable for high wind and seismic loadings. Its superior seismic performance was demonstrated in a full-scale earthquake simulation test of a 6-storey wood-frame building in Japan. In collaboration with APA–The Engineered Wood Association and the American Wood Council (AWC), a new framing arrangement was designed in this study to increase the vertical load resistance of Midply and make it easier to accommodate electrical and plumbing services. In this study, a total of 14 Midply specimens in six wall configurations with different sheathing thicknesses and nail spacing were tested under reversed cyclic loading. Test results showed that Midply has approximately twice the lateral load capacity of a comparable standard shear wall. The drift capacity and energy dissipation capability are also greater than comparable standard shear walls. For Midply to use the same seismic force modification factors as standard shear walls, seismic equivalency to standard shear walls in accordance with ASTM D7989 was also conducted. Although Midply has superior lateral load and drift capacities, it does not seem to be as ductile as the standard shear walls at the same over-strength level. Additional testing and dynamic analysis are recommended to address this issue.
FPInnovations conducted a laboratory test to investigate the potential wetting of cross-laminated timber (CLT) from the pouring of concrete topping, and the effectiveness of a water repellent coating and membrane in preventing such wetting.
FPInnovations a effectué un essai en laboratoire afin d’étudier la teneur en humidité (TH) du bois lamellé-croisé (CLT) découlant du coulage de chapes de béton, et l’efficacité avec laquelle un enduit imperméabilisant et une membrane permettent de de prévenir cette humidification.
The Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) has asked FPInnovations to investigate current information and knowledge for bridge fire impact mitigation opportunities and strategies.
The extent of the investigation includes reaching out to domestic and international contacts to find directly applicable information and literature on strategies to mitigate fire impacts to bridge structures. This will include review of academic journals and reports, products and methods, to find
In the construction of buildings, the timber-concrete (TCC) system can be a cost-competitive solution for floors with longer spans, since the mechanical properties of the two materials are used efficiently. Furthermore, the additional mass from the concrete improves the acoustic performance compared to a timber floor system alone. Nevertheless, TCC floors are not commonly used in buildings in Canada, due to the absence of technical guidelines for such types of structural systems in this country.
This guide provides detailed information on solid woody biofuels that are available in Ontario and the combustion systems that can burn these biofuels. The four types of solid woody biofuels considered in this guide are cordwood (firewood), wood chips, wood briquettes, and wood pellets. The three types of combustion
systems are stoves, furnaces, and boilers. The major considerations for sourcing and using each type of biofuel and
combustion system for institutional / commercial and residential applications are outlined in this guide.
Ce guide donne de l'information détaillée sur les biocombustibles solides qui sont disponibles en Ontario et sur les systèmes de combustion qui peuvent brûler ces biocombustibles. Les quatre types de biocombustibles solides dont il est question dans ce guide sont le bois de chauffage, les copeaux de bois, les briquettes de bois et les granules de bois. Les trois types de systèmes de combustion sont les poêles, les générateurs d'air chaud et les chadières. Ce guide présente les principales considérations en ce qui concerne l'approvisionnement et l'utilisation de chaque type de biocombustible et système de combustion pour les applications instituttionnelles/commerciales et résidentielles.
Braced timber frames (BTFs) are one of the most efficient structural systems to resist lateral loads induced by earthquakes or high winds. Although BTFs are implemented as a system in the National Building Code of Canada (NBCC), no design guidelines currently exist in CSA O86. That not only leaves these efficient systems out of reach of designers, but also puts them in danger of being eliminated from NBCC. The main objective of this project is to generate the technical information needed for development of design guidelines for BTFs as a lateral load resisting system in CSA O86. The seismic performance of 30 BTFs with riveted connections was studied last year by conducting nonlinear dynamic analysis; and also 15 glulam brace specimens using bolted connections were tested under cyclic loading.
In the second year of the project, a relationship between the connection and system ductility of BTFs was derived based on engineering principles. The proposed relationship was verified against the nonlinear pushover analysis results of single- and multi-storey BTFs with various building heights. The influence of the connection ductility, the stiffness ratio, and the number of tiers and storeys on the system ductility of BTFs was investigated using the verified relationship. The minimum connection ductility for different categories (moderately ductile and limited ductility) of BTFs was estimated.
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
Mass timber is a generic name for a broad range of thick and heavy wood products such as cross-laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), and gluelaminated timber (GLT), among others. So far, vibration-controlled design methods have been developed mostly for CLT floors.
These concealed or void space cases require installation of elements which represent additional material cost and labour. For wood buildings that rely heavily on prefabrication, these steps can have a significant impact on scheduling. Removing dependence on concrete and gypsum board in certain applications could make wood buildings more cost competitive to similar buildings of steel and concrete and could further enhance the benefits of prefabricated construction.
Currently, mass timber building designs commonly incorporate a concrete floor topping. This can improve building accoustics by increasing the mass of the assembly, reduce floor vibration and create a smooth flat surface to install finish flooring on. The installation of concrete requires formwork, pouring and finishing the concrete and time to cure which adds to project schedules. One way to address this is to use mass timber elements that are prefabricated with concrete toppings preinstalled. Replaceing the concrete floor toppings wiht dry alternatives, such as cement board, may also reduce construction timelines, while still ensuring adequate acoustic and vibration performance. Cement board needs only to be screwed in place and can be walked on immediately after installation; this reduction in construction time may reduce overall project costs and help make wood buildings more cost competitive than other types of construction.
In fiscal year 2019-2020, FPInnovations developed an Industrialized Construction Research Roadmap to explore, test and deploy innovative products, technologies, tools, processes and practices that have the potential to enable the transformation of the Canadian wood building industry towards higher levels of industrialized construction. One of the activities currently in progress focuses on the identification of manufacturing equipment and software suppliers.
Cross-Laminated Timber (CLT) is an engineered mass timber product manufactured by laminating dimension lumber in layers with alternating orientation using structural adhesives. It is intended for use under dry service conditions and is commonly used to build floors, roofs, and walls. Because prolonged wetting of wood may cause staining, mould, excessive dimensional change (sometimes enough to fail connectors), and even result in decay and loss of strength, construction moisture is an important consideration when building with CLT. This document aims to provide technical information to help architects, engineers, and builders assess the potential for wetting of CLT during building construction and identify appropriate actions to mitigate the risk.
Le bois lamellé-croisé (CLT) est un produit massif de bois d’ingénierie qui est fabriqué à partir de multiples pièces de bois de dimension assemblées en couches orthogonales avec des adhésifs structuraux. Ce produit est conçu pour des conditions de service sèches et est couramment utilisé pour construire des planchers, des toits et des murs. Comme l’humidification prolongée du bois peut causer des taches, de la moisissure, des variations dimensionnelles excessives (parfois suffisantes pour provoquer la défaillance des attaches), et même la pourriture et la perte de résistance, l’humidité est un facteur important dans la
construction avec le CLT. Le présent document a pour but de fournir de l’information technique pouvant aider les architectes, les ingénieurs et les constructeurs à évaluer les risques d’humidification du CLT pendant la construction de bâtiments et à prendre les mesures appropriées pour atténuer ces risques.
Au cours de l’exercice 2019-2020, FPInnovations a élaboré une feuille de route pour la recherche sur la construction industrialisée afin d'étudier ses sous-aspects, de mettre à l’essai et de déployer des produits, des technologies, des outils, des pratiques et des processus novateurs susceptibles d’épauler la transformation de l'industrie canadienne de la construction en bois vers des niveaux plus élevés d’industrialisation (construction préfabriquée hors site), et ce, en étroite collaboration avec ses partenaires. Cette feuille de route s'appuie sur une série d'études techniques fondamentales réalisées précédemment.
In fiscal year 2019-2020, FPInnovations developed a research roadmap in order to explore, test, and deploy innovative products, technologies, tools, processes, and practices that have the potential to enable the transformation of the Canadian building industry towards higher levels of industrialized construction (prefabricated off-site construction), in close collaboration with its partners.
Au cours de l’année financière 2019-2020, FPInnovations a élaboré une carte routière techno-logique et de recherche afin d’explorer, mettre à l’essai et assurer le déploiement de produits innovants, de technologies, d’outils, de procédés et de pratiques ayant le potentiel d’appuyer la transformation de l’industrie canadienne de la construction vers un augmentation de son niveau d’industrialisation (préfabrication), en collaboration étroite avec ses partenaires.
FPInnovations a lancé un projet de
recherche pluriannuel pour mesurer les fréquences
naturelles et les taux d’amortissement des
bâtiments en bois de moyenne et grande hauteur
afin d’élargir la base de données et de valider ou
d’adapter les équations existantes pour estimer les
fréquences naturelles. Deux immeubles de grande
hauteur en bois équipés d'un anémomètre et
d'accéléromètres sont également surveillés en
permanence pour étudier comment le vent excite le
bâtiment.