This guide provides detailed information on solid woody biofuels that are available in Ontario and the combustion systems that can burn these biofuels. The four types of solid woody biofuels considered in this guide are cordwood (firewood), wood chips, wood briquettes, and wood pellets. The three types of combustion
systems are stoves, furnaces, and boilers. The major considerations for sourcing and using each type of biofuel and
combustion system for institutional / commercial and residential applications are outlined in this guide.
Ce guide donne de l'information détaillée sur les biocombustibles solides qui sont disponibles en Ontario et sur les systèmes de combustion qui peuvent brûler ces biocombustibles. Les quatre types de biocombustibles solides dont il est question dans ce guide sont le bois de chauffage, les copeaux de bois, les briquettes de bois et les granules de bois. Les trois types de systèmes de combustion sont les poêles, les générateurs d'air chaud et les chadières. Ce guide présente les principales considérations en ce qui concerne l'approvisionnement et l'utilisation de chaque type de biocombustible et système de combustion pour les applications instituttionnelles/commerciales et résidentielles.
The purpose of this guide is to provide an introduction to the concept of encapsulated mass timber construction. This guide provides an overview of encapsulation techniques for mass timber construction, and other related fire protection measures, and summarizes some approved encapsulation materials and application methods and identifies additional requirements for safety during construction. This guide is intended to help architects, engineers and designers by reducing uncertainty and allowing for more confidence in design, as well as providing authorities having jurisdiction and inspectors with a reference for simple design review.
Funded by Ontario Ministry of Natural Resources and Forestry through FPInnovations with Morrison Hershfield Limited
Wood-frame construction is the dominant building construction in low-rise buildings. The growth in the urban population and the need to meet sustainability objectives will mean having to allow taller buildings in areas that were traditionally low-rise construction. While the need for higher and environmentally sustainable building solutions increases, the Canadian codes responsible for the health and safety of buildings continued to limit wood building solutions to four storeys. Mid-rise (5- and 6-storey) wood-frame construction is a natural extension of low-rise wood-frame construction. In 2009, the BC Building Code (BCBC) was amended by the BC Building and Safety Standards Branch (formerly Policy Branch) to allow mid-rise wood-frame construction. The amendment brought the BC Building Code more closely in line with the U.S. states of California, Washington, and Oregon, where mid-rise wood construction is permitted. More than 100 mid-rise wood-frame construction projects in BC followed the BCBC amendment. Later, the provinces of Québec, Ontario, and Alberta took steps to permit mid-rise wood-frame construction, and finally the Canadian Commission on Building and Fire Codes (CCBFC) accepted code change proposals to allow 5- and 6-storey wood-frame construction in the 2015 edition of the National Building Code Canada (NBCC). NRC, CWC, and FPInnovations worked collaboratively on a project, funded by Natural Resources Canada and several provinces to provide additional technical information to support mid-rise wood-frame construction. This Handbook consists of ten multi-disciplinary chapters, which have been prepared to facilitate the design and construction of mid-rise wood-frame construction in Canada. Building on the information that formed the basis of Association of Professional Engineers and Geoscientists of British Columbia (APEGBC) Bulletin and the Régie du bâtiment du Québec (RBQ) guide, this Handbook covers broad design and construction topics and provides practical solutions by making use of the most recently developed technical and research information. The Handbook has been prepared to assist architects, engineers, code consultants, developers, building owners, and Authorities Having Jurisdiction (AHJ). It is designed to be used in conjunction with the upcoming 2015 edition of the NBCC and the 2014 Edition of the CSA Standard on Engineering Design in Wood. It also complements existing design aids such as the CWC Wood Design Manual.
Building tall in wood is not a new phenomenon. In fact, Canada has a history of constructing tall wood buildings out of heavy timber and brick elements, reaching up to nine storeys. In the early 20th century, with the increase in reinforced concrete and structural steel research and construction, and with growing concerns over fire and durability, the structural use of wood fell out of common use in tall buildings. This trend is beginning to reverse, however. In the last few decades, the world has seen a resurgence of mass timber products and systems that are paving the way for tall wood buildings. This triggered an initiative by Natural Resources Canada (NRCan) to support tall wood building demonstration projects to enhance Canada’s position as a global leader in wood building construction, by showcasing the application and performance of advanced wood technologies. The Technical Guide for the Design and Construction of Tall Wood Buildings in Canada has been prepared to assist architects, engineers, code consultants, developers, building owners, and Authorities Having Jurisdiction (AHJ) in understanding the unique issues to be addressed when developing and constructing tall wood buildings.
La construction en bois de grande hauteur n’est pas un phénomène nouveau. En fait, le Canada compte une longue histoire de construction en bois de grande hauteur à partir d’éléments massifs en bois ou en brique atteignant jusqu’à neuf étages. Au début du 20e siècle, avec l’augmentation de la recherche et de la construction sur les éléments de béton armé et en acier structural et avec les préoccupations croissantes en matière d’incendie et de développement durable, l’utilisation du bois dans des applications structurales a perdu en popularité dans les bâtiments en hauteur. Cette tendance tend toutefois à se renverser; en effet, au cours des dernières décennies, nous avons assisté à une résurgence des produits et systèmes en bois massif qui ouvrent maintenant la voie aux bâtiments en bois de grande hauteur. Ceci a mené à une initiative de Ressources naturelles Canada (RNCan) visant à appuyer les projets de démonstration de bâtiments en bois de grande hauteur afin de promouvoir la position du Canada comme chef de file mondial dans la construction en bois, en démontrant l’application et la performance de technologies avancées à base de bois. Le Guide technique pour la conception et la construction de bâtiments en bois de grande hauteur au Canada a été conçu pour permettre aux architectes, ingénieurs, consultants en codes, promoteurs, propriétaires et autorités compétentes à comprendre les problématiques uniques qui doivent être abordées lors de l’élaboration et de la construction de bâtiments en bois de grande hauteur.
This guide explores how the building industry in British Columbia can meet the challenges of reducing energy use in buildings, in part by effectively accounting for the impact of thermal bridging.
Most practitioners will find PART1 and Appendices A and B to be most useful. PART 1 outlines how to effectively account for thermal bridging. Appendices A and B provide a catalog of common building envelope assemblies and interface details, and their associated thermal performance data.
Researchers and regulators will be interested in PART 2 and PART 3, and Appendices C to E. They contain the cost-benefit analysis, and discussion on significance and further insights, of using this guide to mitigate thermal bridging in buildings.
[Available to the public: http://www.bchydro.com/powersmart/business/programs/new-construction.html?WT.mc_id=rd_construction]
Forintek conducted a series of tests to investigate the properties of five indigenous wood species: trembling aspen, Jack pine, black spruce, white spruce and white birch. The relative performance of these wood species in machining, fastener withdrawal, and finishing are compared in this guide.
The results are relative and not absolute. With this guide, you should be able to compare the performances between these five species and make informed decisions in choosing a species most suited to your operation. It will also allow you to identify potential problems and make rapid changes to machine and process set-ups to suit each species.
This guide is a companion to the "High speed planer adjustment Manual" published by Forintek Canada Corp. Precision tools have been developed to control and to properly adjust all critical parts in planers. Methods to measure depth of cut and to align planer guides and ancillary equipment are suggested. Practical indications are also given for level and parallelism. Finally, the guide provides information on knife grinding, causes of surface defects and maintenance tips. Operators, mechanics, quality controllers, engineers and plant managers can all benefit from this practical Manual.
Ce guide se présente comme le complément du "Manuel d'ajustement des raboteuses à haute vitesse" publié par Forintek Canada Corp. Des outils de précision ont été développés afin d'effectuer la vérification et la mise au point de raboteuses. Des méthodes sont proposées pour contrôler les profondeurs de coupe et positionner correctement tous les éléments d'une raboteuse. A ceci s'ajoutent des conseils de nivellement, de parallélisme et d'alignement des guides de raboteuses et des équipements auxiliaires. L'affûtage des couteaux, l'identification des défauts de surface et l'entretien de la machinerie viennent compléter le guide. Les opérateurs, les mécaniciens ainsi que les ingénieurs et les directeurs d'usines y trouveront des renseignements pratiques.
Ce manuel rassemble les principes régissant l'ajustement des raboteuses à haute vitesse. Il résume les principes de base essentiels pour assurer un bon rendement en matière de production et de qualité, de même qu'une longévité maximale des équipements de rabotage. De plus, il fournit une nouvelle méthode diagnostique et présente un nouveau concept d'optimisation des profondeurs de coupe au rabotage. Les techniques et les renseignements présentés dans ce manuel s'adressent principalement aux mécaniciens, aux opérateurs, aux contrôleurs de qualité ainsi qu'aux dirigeants d'usines de rabotage de bois résineux à haute production. Plusieurs pratiques recommandées s'appliquent également aux opérations de rabotage de bois feuillus et à toutes les autres opérations faisant appel aux raboteuses ou aux moulurières.
This handbook discusses the principles governing the adjustment of high speed planers. It summarizes basic principles, which if observed will ensure adequate performamce in terms of production and quality, as well as maximum service life of planer equipment. Furthermore, it provides a new method for conducting a diagnostic evaluation of planer adjustment and introduces a new concept for the optimization of planer depth-of-cut.The techniques and information contained in this handbook are intended primarily for millwrights, planer operators, quality control personnel and managers of high production softwood planer mills. Several techniques and recommended practices also apply to hardwood planer operations and to all other planer and moulder operations.