Skip header and navigation

Refine Search

5219 records – page 1 of 261.

Fire performance of mass timber

https://library.fpinnovations.ca/en/permalink/fpipub8293
Author
Dagenais, Christian
Ranger, Lindsay
Date
Avril 2021
Material Type
Research report
Field
Sustainable Construction
Author
Dagenais, Christian
Ranger, Lindsay
Date
Avril 2021
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Building codes
Models
Performance
Standards
Timber
Language
French
Abstract
La construction massive en bois est relativement nouvelle et sera bientôt intégrée dans le Code national du bâtiment du Canada (CNB). Il s'agit d'une solution à base de bois à prix compétitif qui complète les systèmes existants à ossature en bois et de construction en gros bois d’œuvre et constitue une option appropriée pour certaines applications qui utilisent actuellement du béton, de la maçonnerie ou de l'acier.
Documents

InfoNote2021N19F.pdf

Read Online Download
Less detail

Performance au feu du bois massif

https://library.fpinnovations.ca/en/permalink/fpipub8294
Author
Dagenais, Christian
Ranger, Lindsay
Date
Avril 2021
Material Type
Research report
Field
Sustainable Construction
Author
Dagenais, Christian
Ranger, Lindsay
Date
Avril 2021
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Construction
Fire
Building codes
Models
Performance
Standards
Timber
Language
French
Abstract
La construction massive en bois est relativement nouvelle et sera bientôt intégrée dans le Code national du bâtiment du Canada (CNB). Il s'agit d'une solution à base de bois à prix compétitif qui complète les systèmes existants à ossature en bois et de construction en gros bois d’œuvre et constitue une option appropriée pour certaines applications qui utilisent actuellement du béton, de la maçonnerie ou de l'acier.
Documents

InfoNote2021N19F.pdf

Read Online Download
Less detail

Fire performance of mass timber

https://library.fpinnovations.ca/en/permalink/fpipub8295
Author
Dagenais, Christian
Ranger, Lindsay
Date
April 2021
Material Type
Research report
Field
Sustainable Construction
Author
Dagenais, Christian
Ranger, Lindsay
Date
April 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Construction
Fire
Building codes
Models
Performance
Standards
Timber
Language
English
Abstract
Mass timber construction is a relatively new type of construction soon to be implemented in the National Building Code of Canada (NBCC). It is a cost-competitive wood-based solution that complements existing wood-frame and heavy timber systems and is a suitable candidate for some applications which currently use concrete, masonry and/or steel.
Documents

InfoNote2021N19E.pdf

Read Online Download
Less detail

Expanding wood use towards 2025: modelling guide for timber structures, year 1

https://library.fpinnovations.ca/en/permalink/fpipub7976
Author
Chen, Zhiyong
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Contributor
Engineered Wood Assocation (APA)
American Wood Council (AWC)
Date
March 2021
Material Type
Research report
Physical Description
23 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Models
Standards
Series Number
Expanding wood use towards 2025
Language
English
Abstract
Computer modelling is an essential part in the analysis and design of mid- and high-rise residential and commercial buildings as well as long-span structures. It is also a valuable tool in the optimisation of wood-based products, connections, and systems. An FPInnovations’ survey shows that practicing engineers are unfamiliar with timber structure modelling, and researchers generally lack resources for advanced modelling of timber systems. Furthermore, wood analysis and design modules currently implemented in a few structural analysis software are usually not suitable for complex or hybrid timber structures. This does not bode well given that performance-based design which is the future direction of building codes and material standards will rely even more on demonstrating the structural performance through computer modelling. In this project, a modelling guide for timber structures is being developed by FPInnovations with a global collaborative effort involving experts in various areas, with the aim of (a) assisting practicing engineers apply computer modelling to timber structures; (b) enriching researchers’ resources for advanced computer modelling of timber systems; and (c) assisting software companies to identify the gaps and upgrade their programs accordingly to accommodate advanced computer modelling of timber structures.
Documents
Less detail

Forest fuel treatment productivity research in Alberta. A synthesis of results and findings

https://library.fpinnovations.ca/en/permalink/fpipub7993
Author
Hvenegaard, Steven
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Hvenegaard, Steven
Contributor
Alberta Agriculture and Forestry
Date
March 2021
Material Type
Research report
Physical Description
29 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Wildfire Operations
Subject
Alberta
Wildfires
Forestry
Fuel
Productivity
FPI TR
Series Number
Technical Report ; TR 2021 n.11
Language
English
Abstract
Forest fuel treatments are applied across a broad range of ecosites in Alberta and Canada, with an overarching goal of managing hazardous fuel buildup to mitigate wildfire. These treatments use various manual and mechanical processes to achieve fuel treatment objectives. Planning and application of a specific forest fuel treatment technique is often shaped by several factors, including objectives of the fuel treatment, availability of resources (personnel and equipment), and commitment to using local resources (socio-economics). In addition, site conditions in certain ecosites will favour the application of some treatment techniques over others. With the broad nature of numerous fuel treatment techniques applied over a wide range of environmental conditions, it is difficult to document all treatments and develop comparative productivity and cost evaluations. This summary of fuel treatment studies accesses current research to present relevant findings and identify knowledge gaps in research on stand-level fuel treatment productivity.
Documents
Less detail

Seasonal flammability of forest fules. Implementing modified oxygen consumption calorimetry to estimate the flammability of black spruce and tamarck

https://library.fpinnovations.ca/en/permalink/fpipub8007
Author
Refai, Razim
Paskaluk, Stephen
Hsieh, Rex
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Refai, Razim
Paskaluk, Stephen
Hsieh, Rex
Contributor
Alberta Agriculture and Forestry (AAF)
Date
March 2021
Material Type
Research report
Physical Description
38 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Wildfire Operations
Subject
Fire
Black spruce
Forest fires
Fuels
Tamarack
Oxygen
FPI TR
Wildfires
Series Number
Technical Report ; TR 2021 n.14
Language
English
Abstract
Modified oxygen consumption calorimetry was used to track the seasonal flammability of black spruce and tamarack. Age class related samples were collected for both species from May to September at research site in central Alberta. These samples were assessed for their differential heat release using test equipment at the Protective Clothing and Equipment Research Facility (PCERF) at the University of Alberta. The test method was able to successfully quantify the differences in seasonal flammability between black spruce and tamarack. Data showed the age-related flammability differences were less pronounced, with the exception of new growth samples early in the season.
Documents
Less detail

In-stand drop footprint mapping using S-61N helicopters

https://library.fpinnovations.ca/en/permalink/fpipub8010
Author
Refai, Razim
Hsieh, Rex
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Refai, Razim
Hsieh, Rex
Date
March 2021
Material Type
Research report
Physical Description
49 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Wildfire Operations
Subject
Wildfires
Helicopters
Forestry
Forest fire
FPI TR
Gel
Series Number
Techncial Reports ; TR 2021 N 16
Language
English
Abstract
Alberta Agriculture and Forestry’s (AAF) Wildfire Management Branch recently contracted two Sikorsky S-61N heavy helicopters. Both helicopters are equipped with an external tank (max. volume 1000 U.S. gallons) and have on-board injection systems that are capable of mixing class A foams and water-enhancers. Currently, there is limited data on comparative drop footprints of foam and water-enhancers (suppressants) for these heavy helicopters. To fill this knowledge gap, AAF has asked FPInnovations to conduct drop tests in different wildland fuel environments. This study focuses on mapping the drop footprints of water, foam, and water-enhancers in black spruce stands at specific flight parameters.
Documents
Less detail

On-field drop footprint mapping using S-61N helicopters

https://library.fpinnovations.ca/en/permalink/fpipub8012
Author
Refai, Razim
Hsieh, Rex
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Refai, Razim
Hsieh, Rex
Date
March 2021
Material Type
Research report
Physical Description
38 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Wildfire Operations
Subject
Wildfires
Helicopters
Forestry
Forest fire
FPI TR
Gel
Series Number
Techncial Reports ; TR 2021 N 18
Language
English
Abstract
Alberta Agriculture and Forestry’s (AAF) Wildfire Management Branch has recently contracted two Sikorsky S-61N heavy helicopters. Both helicopters are equipped with an external tank (max. volume 1000 U.S. gallons) and have on-board injection systems that are capable of mixing class A foams and water-enhancers. Currently, there is limited data on comparative drop footprints of foam and water-enhancers (suppressants) for these heavy helicopters. To fill this knowledge gap, AAF has asked FPInnovations to conduct drop tests in different wildland fuel environments. This study focuses on mapping the drop footprints of water, foam, and water-enhancers in an open field at specific flight parameters.
Documents
Less detail

Développement de murs de cisaillement à haute capacité pour la construction à ossature en bois

https://library.fpinnovations.ca/en/permalink/fpipub8030
Author
Ni, Chun
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Ni, Chun
Date
March 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood structure
Shear walls
Walls
Wood
Building construction
Series Number
InfoNotes 2021 N14
Language
French
Abstract
n collaboration avec l’Université de Victoria, on a mis au point un mur de cisaillement à haute capacité comportant deux rangées de clous au périmètre du revêtement. On a mené un programme d’essais pour évaluer la performance du mur de cisaillement proposé, ce qui comprend la résistance aux charges latérales et aux déplacements, le comportement hystérétique, la rigidité et la ductilité.
Documents

InfoNote2021N14F.pdf

Read Online Download
Less detail

Modelling of mass timber seismic force resisting systems

https://library.fpinnovations.ca/en/permalink/fpipub8031
Author
Chen, Zhiyong
Popovski, Marjan
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Popovski, Marjan
Date
March 2021
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Seismic
Series Number
InfoNote 2021 N6
Language
English
Abstract
This InfoNote briefly introduces the promising MT SFRSs, and the corresponding analytical and finite element models to support their adoptions in structural design offices.
Documents

InfoNote2021N6E.pdf

Read Online Download
Less detail

Systèmes de résistance aux forces sismiques en bois massif dans les codes et les norme au Canada

https://library.fpinnovations.ca/en/permalink/fpipub8032
Author
Chen, Zhiyong
Popovski, Marjan
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Popovski, Marjan
Date
Mars 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Seismic
Series Number
InfoNote 2021 N6
Language
French
Abstract
La présente InfoNote décrit brièvement les systèmes de résistance aux forces sismiques (SRFS) en bois massif qui seront inclus dans l’édition 2020 du Code national du bâtiment (CNB) du Canada, leurs limites de hauteur et les principales exigences de conception selon la norme Règles de calcul des charpentes en bois de l’Association canadienne de normalisation CSA O86-19. Elle explique aussi les différences de limite de hauteur entre les différents systèmes de résistance aux charges de gravité et aux charges latérales.
Documents

InfoNote2021N6F.pdf

Read Online Download
Less detail

Modélisation des systèmes de résistance aux forces sismiques

https://library.fpinnovations.ca/en/permalink/fpipub8033
Author
Chen, Zhiyong
Popovski, Marjan
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Popovski, Marjan
Date
Mars 2021
Material Type
Research report
Physical Description
7 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Seismic
Series Number
InfoNote 2021 N6
Language
French
Abstract
La présente InfoNote décrit brièvement les SRFS en bois massif prometteurs, de même que les modèles analytiques et par éléments finis correspondants dans le but d’encourager leur adoption par les entreprises de conception structurale.
Documents

InfoNote2021N6F.pdf

Read Online Download
Less detail

Detection of phytophthora pathogens in wood products using genomics

https://library.fpinnovations.ca/en/permalink/fpipub8034
Author
Dale, Angela
Kus, Stacey
Uzunovic, Adnan
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Dale, Angela
Kus, Stacey
Uzunovic, Adnan
Date
March 2021
Material Type
Research report
Physical Description
25 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Pathogens
Testing
Tolerance
Preservatives
Wood
Wood products
Series Number
Techncial Reports TR 2021 N 27
Language
English
Abstract
The widespread availability of genomics data and molecular tools for pathogen detection and identification provides scientists and regulators a powerful toolbox for pathogen monitoring. However, this raises questions and concerns regarding the use of these tools in import and export of forest commodities. Discussions around implementation and standardization have highlighted knowledge gaps around their efficacy and suitability in wood and their applicability to forest commodities. This study compared detection efficacy of various emerging tools on artificially infected forest and wood commodities, focusing on Phytophthora pathogens, an important group of invasive and sometimes difficult to detect species. In situ detection was more sensitive than traditional isolation, and for some methods, 100% of infected samples were positive. Detection efficacy varied by tissue type and detection method. The data generated from this study is important in addressing knowledge gaps around pathogen detection in wood.
Documents
Less detail

Construction moisture management, nail-laminated timber

https://library.fpinnovations.ca/en/permalink/fpipub8035
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Laminate product
Performance
Wood frame
Moisture content
Series Number
InfoNote 2021 N 15
Language
English
Abstract
Nail-laminated timber (NLT) is a large built-up member often used as interior structural members for floors, roofs, walls, and elevator/stair shafts. Because prolonged wetting of wood may cause staining, mould, excessive dimensional change (sometimes enough to fail fasteners), and even result in decay and loss of strength, construction moisture is an important consideration when building with NLT. This document aims to provide technical information to help architects, engineers, and builders assess the potential for wetting of NLT during building construction and identify appropriate actions to mitigate the risks.
Documents

InfoNote2021N15E.pdf

Read Online Download
Less detail

Gestion de l'humidité en construction, bois lamellé-cloué

https://library.fpinnovations.ca/en/permalink/fpipub8036
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Physical Description
7 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Laminate product
Performance
Wood frame
Moisture content
Series Number
InfoNote 2021 N 15
Language
French
Abstract
Le bois lamellé-cloué (NLT – Nail-laminated Timber) est un élément massif composé de bois de sciage souvent utilisé comme élément de structure intérieur pour les planchers, les toits, les murs et les cages d'ascenseur/escalier. Étant donné que l’humidification prolongée du bois peut provoquer des taches, de la moisissure, des variations dimensionnelles excessives (parfois suffisantes pour provoquer la défaillance des attaches), et même la pourriture et la perte de résistance, l'humidité est un facteur important à prendre en compte lors de travaux de construction avec du bois lamellé-cloué. Le présent document vise à fournir de l’information technique pouvant aider les architectes, les ingénieurs et les constructeurs à évaluer les risques d’humidification du bois lamellé-cloué pendant la construction de bâtiments et à prendre les mesures appropriées pour atténuer ces risques.
Documents

InfoNote2021N15F.pdf

Read Online Download
Less detail

Ensuring access for Canadian forestry operations with wet and weak resource roads

https://library.fpinnovations.ca/en/permalink/fpipub8044
Author
Gillies, Clayton
Thiam, Papa-Masseck
Bober, Francis
Bradley, Allan
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Gillies, Clayton
Thiam, Papa-Masseck
Bober, Francis
Bradley, Allan
Date
March 2021
Material Type
Research report
Physical Description
24 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Transportation Infrastructure
Subject
Forestry
Roads
Road construction
Planning
Water
Series Number
Technical Report TR 2021 N26
Language
English
Abstract
Forest operations across Canada are encountering increasingly difficult road conditions and more frequent access interruptions related to wet and weak road sections. Resource roads are considered a liability by many forest companies and their business model has been to create the lowest cost, lowest standard, resource road network possible that also will provide tolerable levels of access (i.e., some but not too many failures and hauling disruptions). Increasingly difficult operating conditions and frequent access interruptions, however, drive up costs and threaten the economic sustainability of forest operations. Starting in 2017, FPInnovations has launched a project to provide its members with techniques and strategies that will offer more reliable and strong road sections and reduce overall road costs. A state-of-practice survey of FPInnovations members provided researchers with a comprehensive understanding of conventional means of responding to wet, weak road conditions in Canada. The report summarizes the responses to wet, weak resource road sections that were identified in the state-of-practice survey and provides an overview of the chief causes and related site indicators for wet, weak road conditions. Recommended best practices are provided for a variety of conventional industry responses to wet, weak road sections. These address common misconceptions and knowledge gaps that reduce the effectiveness and increase the overall cost associated with the industry responses. These best practice recommendations were based upon findings from a literature review, product manufacturer information, and from researcher expertise. The report also considers improvements to conventional practices, and advanced solutions that are potentially more effective and economic than the state-of-practice but are not widely exploited by industry. Eleven potential solutions from these two categories were compared and ranked in order of potential. The practice improvements selected for further study were soil compaction, and corduroy and access mats. The advanced solutions selected for further study were geosynthetics that offer both soil reinforcement and enhanced drainage, geocells, and TPCS, a technology to improve truck road-friendliness. Starting in 2021, FPInnovations will initiate field trials and life cycle cost analyses of these technologies.
Documents
Less detail

Bioenergie La Tuque (BELT) project summary (public version)

https://library.fpinnovations.ca/en/permalink/fpipub8060
Author
Mehr, Nima Ghavidel
Gilani, Banafsheh
Rezaei, Hooman
Robinson, Travis
Volpé, Sylvain
Date
April 2021
Edition
48830
Material Type
Research report
Field
Bioproducts
Author
Mehr, Nima Ghavidel
Gilani, Banafsheh
Rezaei, Hooman
Robinson, Travis
Volpé, Sylvain
Date
April 2021
Edition
48830
Material Type
Research report
Physical Description
21 p.
Sector
Pulp Paper and Bioproducts
Field
Bioproducts
Research Area
Building Systems
Subject
Renewable natural resources
Biomass
Energy
Value added
Markets
Conversion factors
Pyrolysis
Series Number
Technical Report; TR 2021 N29
Language
English
Abstract
Bioenergie La Tuque (BELT) has targeted the production of renewable liquid hydrocarbon fuels (mostly diesel and aviation fuel) from forestry residues. The production of this type of biofuel is an important and necessary factor enabling Canada to meet its greenhouse gas emission reduction targets. Its importance rests on the potential inherent in the utilization of abundant and sustainable lignocellulosic feedstock, which does not compete with food as well as its complete compatibility with existing transportation fuel markets. BELT’s technology assessment team employed a systematic approach to identify mature technologies with the potential to meet the needs of BELT’s proposed biorefinery. A stepwise approach was used to sift through a wide range of biomass conversion technologies. The first fourteen (14) technologies were selected from a list of over 600 technologies by eliminating those that were not appropriate for the required conversion, lacked the necessary technological maturity, or were defunct.
Documents
Less detail

Field hygrothermal performance of R22+ wood-frame walls in Vancouver

https://library.fpinnovations.ca/en/permalink/fpipub8066
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Physical Description
8 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood frame
Performance
British Columbia
Climate
Environment
Series
InfoNote 2021 no. 3
Language
English
Abstract
A test program was conducted to generate hygrothermal performance data for light-wood-frame exterior walls meeting the R22 effective (RSI 3.85) requirement for buildings up to six storeys in the City of Vancouver. Six types of exterior wall assemblies, with 12 wall panels in total, were tested using a test hut located in the rear yard of FPInnovations’ Vancouver aboratory. This document provides a brief summary of the test and performance of these walls based on the data collected over the 19 months’ period from October 2018 to May 2020
Documents

InfoNote2021N3E.pdf

Read Online Download
Less detail

Le Rendement hygrothermique de murs à ossature de bois R22+ à Vancouver

https://library.fpinnovations.ca/en/permalink/fpipub8067
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Physical Description
9 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood frame
Performance
British Columbia
Climate
Environment
Series
InfoNote 2021 no. 3
Language
French
Abstract
Un programme d’essais a été réalisé en vue de générer des données sur le rendement hygrothermique des murs à ossature légère de bois qui répondent à l’exigence R22 (RSI 3,85) pour les bâtiments d'au plus six étages à Vancouver. Six types d’assemblage de mur extérieur, avec un total de 12 murs extérieurs, ont été mis à l’essai à l’aide d’une hutte d’essai située dans la cour arrière du laboratoire de FPInnovations à Vancouver. Le présent document présente un court résumé de l’essai et du rendement de ces murs en se basant sur les données recueillies sur une période de 19 mois, soit d’octobre 2018 à mai 2020 (Wang 2021).
Documents

InfoNote2021N3F.pdf

Read Online Download
Less detail

Use of molecular diagnostic tools for pest detection in forestry

https://library.fpinnovations.ca/en/permalink/fpipub8070
Author
Uzunovic, Adnan
Dale, Angela
Kus, Stacey
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Uzunovic, Adnan
Dale, Angela
Kus, Stacey
Date
March 2021
Material Type
Research report
Physical Description
24 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Detection
Insects
Inspection
Pathogens
Regulations
Research
Wood
Series Number
Technical Report; TR 2021 N.31
Language
English
Abstract
Large volumes of forest products are traded internationally. With this comes an increased risk of moving forest pathogens associated with these products. To protect both forest health and international trade, prevention or control of pest movement and establishment needs to be done using approaches which result in minimal trade interruption. Rapid, economical, and accurate detection, identification and risk assessment of pathogens is one of the key aspects of successful management. Significant developments in the last two decades in genomics has enabled more accurate and rapid detection of pathogens. However, many of these techniques have not been thoroughly tested in wood and lack associated standards governing their use in a regulatory setting. There are ongoing concerns that these new methods will add regulatory compliance costs to industry and other stakeholders, or that they will be used improperly and unduly limit market access. To address these concerns, it is critical that the capabilities and limits of these tools are well understood by both industry and international regulators, and that standards are developed to govern their use to help reduce the threat of pests while minimizing the impact to trade. This report summarizes current technologies and suggests ways forward.
Documents
Less detail

5219 records – page 1 of 261.