Skip header and navigation

Refine Search

5668 records – page 2 of 284.

Detection of phytophthora pathogens in wood products using genomics

https://library.fpinnovations.ca/en/permalink/fpipub8034
Author
Dale, Angela
Kus, Stacey
Uzunovic, Adnan
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Dale, Angela
Kus, Stacey
Uzunovic, Adnan
Date
March 2021
Material Type
Research report
Physical Description
25 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Pathogens
Testing
Tolerance
Preservatives
Wood
Wood products
Series Number
Techncial Reports TR 2021 N 27
Language
English
Abstract
The widespread availability of genomics data and molecular tools for pathogen detection and identification provides scientists and regulators a powerful toolbox for pathogen monitoring. However, this raises questions and concerns regarding the use of these tools in import and export of forest commodities. Discussions around implementation and standardization have highlighted knowledge gaps around their efficacy and suitability in wood and their applicability to forest commodities. This study compared detection efficacy of various emerging tools on artificially infected forest and wood commodities, focusing on Phytophthora pathogens, an important group of invasive and sometimes difficult to detect species. In situ detection was more sensitive than traditional isolation, and for some methods, 100% of infected samples were positive. Detection efficacy varied by tissue type and detection method. The data generated from this study is important in addressing knowledge gaps around pathogen detection in wood.
Documents
Less detail

Construction moisture management, nail-laminated timber

https://library.fpinnovations.ca/en/permalink/fpipub8035
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Laminate product
Performance
Wood frame
Moisture content
Series Number
InfoNote 2021 N 15
Language
English
Abstract
Nail-laminated timber (NLT) is a large built-up member often used as interior structural members for floors, roofs, walls, and elevator/stair shafts. Because prolonged wetting of wood may cause staining, mould, excessive dimensional change (sometimes enough to fail fasteners), and even result in decay and loss of strength, construction moisture is an important consideration when building with NLT. This document aims to provide technical information to help architects, engineers, and builders assess the potential for wetting of NLT during building construction and identify appropriate actions to mitigate the risks.
Documents

InfoNote2021N15E.pdf

Read Online Download
Less detail

Gestion de l'humidité en construction, bois lamellé-cloué

https://library.fpinnovations.ca/en/permalink/fpipub8036
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Physical Description
7 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Laminate product
Performance
Wood frame
Moisture content
Series Number
InfoNote 2021 N 15
Language
French
Abstract
Le bois lamellé-cloué (NLT – Nail-laminated Timber) est un élément massif composé de bois de sciage souvent utilisé comme élément de structure intérieur pour les planchers, les toits, les murs et les cages d'ascenseur/escalier. Étant donné que l’humidification prolongée du bois peut provoquer des taches, de la moisissure, des variations dimensionnelles excessives (parfois suffisantes pour provoquer la défaillance des attaches), et même la pourriture et la perte de résistance, l'humidité est un facteur important à prendre en compte lors de travaux de construction avec du bois lamellé-cloué. Le présent document vise à fournir de l’information technique pouvant aider les architectes, les ingénieurs et les constructeurs à évaluer les risques d’humidification du bois lamellé-cloué pendant la construction de bâtiments et à prendre les mesures appropriées pour atténuer ces risques.
Documents

InfoNote2021N15F.pdf

Read Online Download
Less detail

Ensuring access for Canadian forestry operations with wet and weak resource roads

https://library.fpinnovations.ca/en/permalink/fpipub8044
Author
Gillies, Clayton
Thiam, Papa-Masseck
Bober, Francis
Bradley, Allan
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Gillies, Clayton
Thiam, Papa-Masseck
Bober, Francis
Bradley, Allan
Date
March 2021
Material Type
Research report
Physical Description
24 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Transportation Infrastructure
Subject
Forestry
Roads
Road construction
Planning
Water
Series Number
Technical Report TR 2021 N26
Language
English
Abstract
Forest operations across Canada are encountering increasingly difficult road conditions and more frequent access interruptions related to wet and weak road sections. Resource roads are considered a liability by many forest companies and their business model has been to create the lowest cost, lowest standard, resource road network possible that also will provide tolerable levels of access (i.e., some but not too many failures and hauling disruptions). Increasingly difficult operating conditions and frequent access interruptions, however, drive up costs and threaten the economic sustainability of forest operations. Starting in 2017, FPInnovations has launched a project to provide its members with techniques and strategies that will offer more reliable and strong road sections and reduce overall road costs. A state-of-practice survey of FPInnovations members provided researchers with a comprehensive understanding of conventional means of responding to wet, weak road conditions in Canada. The report summarizes the responses to wet, weak resource road sections that were identified in the state-of-practice survey and provides an overview of the chief causes and related site indicators for wet, weak road conditions. Recommended best practices are provided for a variety of conventional industry responses to wet, weak road sections. These address common misconceptions and knowledge gaps that reduce the effectiveness and increase the overall cost associated with the industry responses. These best practice recommendations were based upon findings from a literature review, product manufacturer information, and from researcher expertise. The report also considers improvements to conventional practices, and advanced solutions that are potentially more effective and economic than the state-of-practice but are not widely exploited by industry. Eleven potential solutions from these two categories were compared and ranked in order of potential. The practice improvements selected for further study were soil compaction, and corduroy and access mats. The advanced solutions selected for further study were geosynthetics that offer both soil reinforcement and enhanced drainage, geocells, and TPCS, a technology to improve truck road-friendliness. Starting in 2021, FPInnovations will initiate field trials and life cycle cost analyses of these technologies.
Documents
Less detail

Bioenergie La Tuque (BELT) project summary (public version)

https://library.fpinnovations.ca/en/permalink/fpipub8060
Author
Mehr, Nima Ghavidel
Gilani, Banafsheh
Rezaei, Hooman
Robinson, Travis
Volpé, Sylvain
Date
April 2021
Edition
48830
Material Type
Research report
Field
Bioproducts
Author
Mehr, Nima Ghavidel
Gilani, Banafsheh
Rezaei, Hooman
Robinson, Travis
Volpé, Sylvain
Date
April 2021
Edition
48830
Material Type
Research report
Physical Description
21 p.
Sector
Pulp Paper and Bioproducts
Field
Bioproducts
Research Area
Building Systems
Subject
Renewable natural resources
Biomass
Energy
Value added
Markets
Conversion factors
Pyrolysis
Series Number
Technical Report; TR 2021 N29
Language
English
Abstract
Bioenergie La Tuque (BELT) has targeted the production of renewable liquid hydrocarbon fuels (mostly diesel and aviation fuel) from forestry residues. The production of this type of biofuel is an important and necessary factor enabling Canada to meet its greenhouse gas emission reduction targets. Its importance rests on the potential inherent in the utilization of abundant and sustainable lignocellulosic feedstock, which does not compete with food as well as its complete compatibility with existing transportation fuel markets. BELT’s technology assessment team employed a systematic approach to identify mature technologies with the potential to meet the needs of BELT’s proposed biorefinery. A stepwise approach was used to sift through a wide range of biomass conversion technologies. The first fourteen (14) technologies were selected from a list of over 600 technologies by eliminating those that were not appropriate for the required conversion, lacked the necessary technological maturity, or were defunct.
Documents
Less detail

Field hygrothermal performance of R22+ wood-frame walls in Vancouver

https://library.fpinnovations.ca/en/permalink/fpipub8066
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Physical Description
8 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood frame
Performance
British Columbia
Climate
Environment
Series
InfoNote 2021 no. 3
Language
English
Abstract
A test program was conducted to generate hygrothermal performance data for light-wood-frame exterior walls meeting the R22 effective (RSI 3.85) requirement for buildings up to six storeys in the City of Vancouver. Six types of exterior wall assemblies, with 12 wall panels in total, were tested using a test hut located in the rear yard of FPInnovations’ Vancouver aboratory. This document provides a brief summary of the test and performance of these walls based on the data collected over the 19 months’ period from October 2018 to May 2020
Documents

InfoNote2021N3E.pdf

Read Online Download
Less detail

Le Rendement hygrothermique de murs à ossature de bois R22+ à Vancouver

https://library.fpinnovations.ca/en/permalink/fpipub8067
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Physical Description
9 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood frame
Performance
British Columbia
Climate
Environment
Series
InfoNote 2021 no. 3
Language
French
Abstract
Un programme d’essais a été réalisé en vue de générer des données sur le rendement hygrothermique des murs à ossature légère de bois qui répondent à l’exigence R22 (RSI 3,85) pour les bâtiments d'au plus six étages à Vancouver. Six types d’assemblage de mur extérieur, avec un total de 12 murs extérieurs, ont été mis à l’essai à l’aide d’une hutte d’essai située dans la cour arrière du laboratoire de FPInnovations à Vancouver. Le présent document présente un court résumé de l’essai et du rendement de ces murs en se basant sur les données recueillies sur une période de 19 mois, soit d’octobre 2018 à mai 2020 (Wang 2021).
Documents

InfoNote2021N3F.pdf

Read Online Download
Less detail

Use of molecular diagnostic tools for pest detection in forestry

https://library.fpinnovations.ca/en/permalink/fpipub8070
Author
Uzunovic, Adnan
Dale, Angela
Kus, Stacey
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Uzunovic, Adnan
Dale, Angela
Kus, Stacey
Date
March 2021
Material Type
Research report
Physical Description
24 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Detection
Insects
Inspection
Pathogens
Regulations
Research
Wood
Series Number
Technical Report; TR 2021 N.31
Language
English
Abstract
Large volumes of forest products are traded internationally. With this comes an increased risk of moving forest pathogens associated with these products. To protect both forest health and international trade, prevention or control of pest movement and establishment needs to be done using approaches which result in minimal trade interruption. Rapid, economical, and accurate detection, identification and risk assessment of pathogens is one of the key aspects of successful management. Significant developments in the last two decades in genomics has enabled more accurate and rapid detection of pathogens. However, many of these techniques have not been thoroughly tested in wood and lack associated standards governing their use in a regulatory setting. There are ongoing concerns that these new methods will add regulatory compliance costs to industry and other stakeholders, or that they will be used improperly and unduly limit market access. To address these concerns, it is critical that the capabilities and limits of these tools are well understood by both industry and international regulators, and that standards are developed to govern their use to help reduce the threat of pests while minimizing the impact to trade. This report summarizes current technologies and suggests ways forward.
Documents
Less detail

Addressing road surface erosion, protecting watercourse crossings

https://library.fpinnovations.ca/en/permalink/fpipub8094
Author
Gillies, Clayton
Date
March 2021
Material Type
Research report
Field
Fibre Supply
Author
Gillies, Clayton
Date
March 2021
Material Type
Research report
Physical Description
13 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Transportation Infrastructure
Subject
Water crossings
Water
Stream
Stream management
Sediment control
Roads
Erosion
Forest roads
Series Number
Technical Reports; TR 2021 N32
Language
English
Abstract
This report presents the importance of best management practices for mitigating erosion from resource roads and preventing sediment from entering a watercourse. Key to achieving these goals is the understanding of erosion from the road surface and the level of connectivity from the delivery point of the sediment-laden water onto the forest floor and the watercourse. This report provides a list of best management practices that is specific to resource roads.
Documents
Less detail

Expanding wood use towards 2025: seismic performance of midply shear walls, year 2

https://library.fpinnovations.ca/en/permalink/fpipub8109
Author
Ni, Chun
Chen, Zhiyong
Date
March 2021
Edition
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Ni, Chun
Chen, Zhiyong
Contributor
Engineered Wood Assocation (APA)
American Wood Council (AWC)
Date
March 2021
Edition
March 2021
Material Type
Research report
Physical Description
52 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Seismic
Shear walls
Standards
Series Number
Expanding wood use towards 2025
Technical Report TR 2021 N43
Language
English
Abstract
Midply shear wall, which was originally developed by researchers at Forintek Canada Corp. (predecessor of FPInnovations) and the University of British Columbia, is a high-capacity shear wall system that is suitable for high wind and seismic loadings. Its superior seismic performance was demonstrated in a full-scale earthquake simulation test of a 6-storey wood-frame building in Japan. In collaboration with APA–The Engineered Wood Association and the American Wood Council (AWC), a new framing arrangement was designed in this study to increase the vertical load resistance of midply shear walls and make it easier to accommodate electrical and plumbing services. In this study, a total of 12 midply shear wall specimens in four wall configurations with different sheathing thicknesses and nail spacing were tested under reversed cyclic loading. Test results showed that the modified midply shear walls have approximately twice the lateral load capacity of a comparable standard shear wall. The drift capacity and energy dissipation capability are also greater than comparable standard shear wall. Seismic equivalency to standard shear walls in accordance with ASTM D7989 was also conducted. Results show that an overstrength factor of 2.5 and can be used to assign allowable design strengths of midply shear walls with 7/16” and nail spacing at 4” or 3” on center. For midply shear walls with 19/32” OSB, a higher overstrength factor must be used to meet the ductility criteria. The information from this study will support code implementation of the midply shear walls in Canadian and US timber design standards, thereby providing more design options for light wood frame structures in North America.
Documents
Less detail

Expanding wood use towards 2025: development of mass timber midply wall systems, year 1

https://library.fpinnovations.ca/en/permalink/fpipub8111
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Hu, Lin
Date
March 2021
Edition
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Hu, Lin
Contributor
Engineered Wood Assocation (APA)
American Wood Council (AWC)
Date
March 2021
Edition
March 2021
Material Type
Research report
Physical Description
49 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Seismic
Shear walls
Standards
Series Number
Expanding wood use towards 2025
Technical Report TR 2021 N48
Language
English
Abstract
n the first year of this project, literature reviews were conducted to identify the code requirements on MT components and to survey the available LLRSs used in the MT structures. Conceptual MT midply wall systems meeting structural, fire, and acoustical performance requirements were proposed. An advisory group meeting was held to evaluate the practicability of the proposed MT midply systems. In the next fiscal year, the proposed MT Midply will be optimised further according to the comments and suggestions from the advisory group. Analytical evaluation of the proposed MT Midply wall systems along with necessary tests will be conducted. Based on the evaluation, a go / no-go decision will be made as to whether the study should be continued for the proposed MT Midply.
Documents
Less detail

Testing R22+ wood-frame walls for hygrothermal performance in the Vancouver climate: construction and instrumentation

https://library.fpinnovations.ca/en/permalink/fpipub8113
Author
Wang, Jieying
Ramandeep, Ramandeep
Holcroft, Neal
Chow, Gordon
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Ramandeep, Ramandeep
Holcroft, Neal
Chow, Gordon
Date
March 2021
Material Type
Research report
Physical Description
39 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood frame
Performance
British Columbia
Climate
Environment
Series Number
Technical Report TR 2021 N 45
Language
English
Abstract
This study focuses on measuring the wood moisture content (MC), temperature, and relative humidity (RH) (and the corresponding vapour pressure gradients) through each wall assembly to assess its hygrothermal performance. Controlled moisture loads, in the form of vapour (achieved by maintaining a relatively high indoor RH) and liquid water (achieved by periodically injecting water to the wetting pads installed on the wood panels) are employed to stress these walls for investigating their moisture-related behaviour. After the wall panels and most instruments were installed but with the CLT directly exposed to the interior environment, a high indoor RH in range of 70-80% was maintained, starting mid-December 2020 inside the test hut to condition the wood to achieve comparable moisture gradients among the eight CLT panels. The test walls were closed in with interior framing (and interior insulation of walls No. 1 and No. 2) and drywall installed, followed with interior finishing in late January 2021. The indoor RH was afterwards set to be around 50%. Water injection is planned to start in the summer of 2021. Test results and performance of these walls will be presented and discussed in future reports.
Documents
Less detail

Biomass storage safety

https://library.fpinnovations.ca/en/permalink/fpipub8116
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Helmeste, Christopher
Date
May 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Helmeste, Christopher
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
May 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Bioenergy
Biomass
Forestry
Storage
Series Number
NRC Impact Story ; 002
Language
English
Abstract
The research and technology transfer has national implications that will support bioenergy facilities and rural and Indigenous communities across the country. The CWFC is continuing this work to increase our understanding and expand the safe and sustainable use of biomass for bioenergy.
Documents
Less detail

Sécurité du stockage de la biomasse

https://library.fpinnovations.ca/en/permalink/fpipub8117
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Helmeste, Christopher
Date
Mai 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Helmeste, Christopher
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
Mai 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Bioenergy
Biomass
Forestry
Storage
Series Number
NRC Impact Story ; 002
Language
French
Abstract
Le transfert des connaissances et de la technologie soutiendra les installations de bioénergie ainsi que les communautés rurales et autochtones dans l’ensemble du pays. Le CCFB poursuit ce travail a n de mieux comprendre et d’élargir l’utilisation sûre et durable de la biomasse pour la bioénergie.
Documents
Less detail

Commercial thinning for forest health

https://library.fpinnovations.ca/en/permalink/fpipub8118
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lussier, Jean-Martin
Date
May 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lussier, Jean-Martin
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
May 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Forest management
Forests
Sustainability
Thinning
Series Number
NRC Impact Story ; 001
Language
English
Abstract
The researchers suggest partial harvesting - in this case, thinning forests in 20-year increments during the natural pest disturbance periods. The result is a cost-effective and sustainable way to harvest trees and maintain resilient forests.
Documents
Less detail

Éclaircie commerciale

https://library.fpinnovations.ca/en/permalink/fpipub8119
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lussier, Jean-Martin
Date
Mai 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lussier, Jean-Martin
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
Mai 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Forest management
Forests
Sustainability
Thinning
Series Number
NRC Impact Story ; 001
Language
French
Abstract
Les chercheurs suggèrent une récolte partielle; dans ce cas, l`éclaircissage des forêts par tranche de 20 ans pendant les périodes de perturbation naturelle des ravageurs. Le résultat est un moyen durable et économique de récolter des arbres et de maintenir des forêts résilientes.
Documents
Less detail

Enhanced forest inventory

https://library.fpinnovations.ca/en/permalink/fpipub8120
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Dick, Adam
Date
May 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Dick, Adam
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
May 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Forest management
Forestry
Inventory
Inventory tracking
Series Number
NRC Impact Story ; 003
Language
English
Abstract
Forests make up nearly 35 per cent – 347 million hectares – of Canadian land. For the forest sector, that’s a lot of inventory to manage and monitor. To run any successful business, inventory needs to be monitored. That’s why researchers at the Canadian Wood Fibre Centre (CWFC) are enhancing current inventory systems to improve how forest managers, provincial governments, and other communities across Canada manage forests.
Documents
Less detail

Inventaire forestier amélioré

https://library.fpinnovations.ca/en/permalink/fpipub8121
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Dick, Adam
Date
May 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Dick, Adam
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
May 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Forest management
Forestry
Inventory
Inventory tracking
Series Number
NRC Impact Story ; 003
Language
English
Abstract
Le Canada compte 347 millions d’hectares de forêt, ce qui correspond à près de 35 % de sa super cie. C’est beaucoup de stocks à gérer et surveiller pour le secteur forestier. Pour gérer avec succès une exploitation, une surveillance des stocks s’impose. C’est la raison pour laquelle les chercheurs du Centre canadien sur la bre de bois (CCFB) s’emploient à améliorer les systèmes d’inventaire actuels de manière à améliorer la façon dont les aménagistes forestiers, les gouvernements provinciaux et d’autres collectivités du Canada gèrent les forêts.
Documents
Less detail

The FastTRAC to first-rate seeds

https://library.fpinnovations.ca/en/permalink/fpipub8122
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lenz, Patrick
Date
May 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lenz, Patrick
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
May 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
FastTRAC
Forest management
Forestry
Genetic
Inventory
Physical properties
Seeds
Trees
Series Number
NRC Impact Story ; 005
Language
English
Abstract
The FastTRAC project brought together scientists, foresters and economists from the Canadian Wood Fibre Centre, Laval University, FPInnovations, the Government of Québec, J.D. Irving, and the New Brunswick Tree Improvement Council. They demonstrated tree genomic-assisted selection at the operational scale and highlighted the economic benefits of FastTRAC technology.
Documents
Less detail
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lenz, Patrick
Date
May 2021
Material Type
Pamphlet
Field
Fibre Supply
Author
Kingsbury, Nancy
Lewis-Gibbs, Adenieke
Lenz, Patrick
Contributor
Natural Resources Canada (NRC)
Canadian Wood Fibre Centre
Date
May 2021
Material Type
Pamphlet
Physical Description
2 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
FastTRAC
Forest management
Forestry
Genetic
Inventory
Physical properties
Seeds
Trees
Series Number
NRC Impact Story ; 005
Language
French
Abstract
Des chercheurs primés du Centre canadien sur la bre de bois du Service canadien des forêts (CCFB/SCF) mènent cette recherche génomique dans le cadre d’un projet appelé FastTRAC (Fast Tests for Rating and Amelioration of Conifers / Tests rapides pour l’amélioration des conifères). Ces travaux transforment les programmes traditionnels d’amélioration génétique des arbres, ils améliorent la sélection des arbres et ils dotent les producteurs de semences de recherches et d’outils essentiels.
Documents
Less detail

5668 records – page 2 of 284.