Skip header and navigation

6 records – page 1 of 1.

A strategic approach to value creation via market driven innovation in building and living with wood

https://library.fpinnovations.ca/en/permalink/fpipub41396
Author
Crespell, Pablo
Date
April 2008
Material Type
Research report
Field
Sustainable Construction
Author
Crespell, Pablo
Date
April 2008
Material Type
Research report
Physical Description
225 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Technological innovation
Research
Markets
Design
Building construction
Series Number
Transformative Technologies - Federal Initiative Final Report 2007/08
W-2565
Location
Vancouver, British Columbia
Language
English
Abstract
"Creating value via innovation". That principle is at the core of FPInnovations' value proposition. This report acknowledges that and takes a multi tier approach to better understand the innovation process and it is divided into three levels: manufacturer, R&D, and user. A careful reading of FPInnovations' vision and mission reveals that the consolidation has brought change and challenge, taking the organization beyond research and assuming a protagonist role as an integrator of the innovation efforts carried out by its members, the R&D community and its own staff (Research Program 2008/2009). Accomplishing such demanding goals will demand acquiring and mastering a number of tools, management practices and knowledge base that this report has tried to examine. It also recognizes the role that the external environment plays and therefore it includes sections looking at industry structure considerations, cooperation networks and such. From an internal point of view, the report outlines some guidelines meant to serve as an aide in the operationalization of the mission and vision set for FPInnovations by our board. The merger and new guidelines have added a new innovation component to the Divisions' successful record of value creation for their members. This new component is a much needed response to the challenging times the industry is going through. FPInnovations recognizes the value proposition of innovation while also acknowledging the merits of best practices for those companies favouring a more traditional approach to doing business.
Building construction - Design
Markets - Estimating
Research & Development
Technological innnovations
Documents
Less detail

Survey of the performance of wood-frame construction during the Wenchuan (Sichuan) earthquake of May 12, 2008

https://library.fpinnovations.ca/en/permalink/fpipub5624
Author
Ni, Chun
Rainer, J.H.
Doudak, Ghasan
Zhang, H.
Guo, H.
Date
October 2008
Edition
37924
Material Type
Research report
Field
Sustainable Construction
Author
Ni, Chun
Rainer, J.H.
Doudak, Ghasan
Zhang, H.
Guo, H.
Contributor
Forestry Innovation Investment
Date
October 2008
Edition
37924
Material Type
Research report
Physical Description
78 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Specifications
Specification
Design
Building construction
Series Number
W-2599
Location
Vancouver, British Columbia
Language
English
Abstract
The objectives of the site visit were to document the damage to wood-frame and other wood buildings from the May 12, 2008 Wenchuan (Sichuan) earthquake and to compare the performance of wood-frame buildings with non-wood buildings of similar size. Because of the limited number of wood-frame buildings in the affected region, all the available wood construction close to the seismically affected area was investigated as follows:
2 wood-frame houses in Dujiangyan
3 solid timber cabins in Dujiangyan
2 houses of wood-frame construction in Chengdu
6 houses of post-and-beam construction with wood-panel infill in Songpan. The houses in Chengdu and in Dujiangyan are located, respectively, in low intensity and moderate-to-high intensity regions of shaking during that earthquake. From the inspection of the four houses and other concrete buildings nearby, it can be stated that even under light and moderate-to-high levels of seismic shaking the wood-frame houses examined suffered significantly less damage than nearby reinforced concrete houses of comparable size. Based on a design-oriented analysis of seismic capacity it is shown that the wood-frame Houses A and B can withstand a pseudo-spectral acceleration of at least 0.89 and 1.01 g, respectively. This is judged to be a conservative estimate since the positive contribution of the exterior stucco and the second interior gypsum wall board (GWB) has not been included in the analysis. The three timber cabins examined in Dujiangyan also performed very well, showing no signs of seismic-induced distress. The six post-and-beam wood buildings with wood-frame infill in Songpan also showed no signs of seismic damage, although for the latter the intensity of shaking was quite low. From some examples of damaged concrete buildings, it was observed that numerous infill walls were damaged or had collapsed and thus subjected the inhabitants to mortal danger. Lightweight wood-frame infill walls for concrete frames could provide a safer alternative to the heavy and relatively brittle brick infill walls. Furthermore, the resulting reduction in building weight would further enhance seismic safety of the entire building. It is recommended that for the Chinese code the GWB contribution be considered for normal seismic loading. However, the GWB should not be included in the design check for rare earthquakes because of the limited ductility of shear walls sheathed with GWB at the high levels of shaking associated with the rare seismic events.
Building construction - Design - China
Building construction - Specifications - China
Earthquakes, Effect on building construction
Documents
Less detail

Improved prediction of seismic resistance of part 9 houses: progress report

https://library.fpinnovations.ca/en/permalink/fpipub37875
Author
Rainer, J.H.
Ni, Chun
Date
March 2008
Material Type
Research report
Field
Sustainable Construction
Author
Rainer, J.H.
Ni, Chun
Contributor
Canada Mortgage and Housing Corporation (CMHC)
Date
March 2008
Material Type
Research report
Physical Description
20 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Design
Building construction
Series Number
5580
W-2510
Location
Vancouver, British Columbia
Language
English
Abstract
This Interim Report of the research project "Improved prediction of seismic resistance of Part 9 Houses" under the CMHC External Research Program presents a detailed literature review of research relevant to lateral resistance of conventional wood-frame construction and an assessment of three mechanics-based methods for calculating lateral capacity. The relative performance of the three mechanics-based methods is ascertained by comparing the test data of lateral capacities of partially restrained wall specimens having window openings with the predicted results from the calculation methods. Method 1 by Ni and Karacabeyli (2000, 2002) is the simplest to use and gave the most conservative results; Method 2 by Källsner et al., (2001, 2002) is less conservative but more complicated, and Method 3 by Källsner and Gurhammar (2005, 2006) gives non-conservative results. In the next phase of the project, these mechanics-based methods will be further calibrated against pertinent shake table results from the recent UBC "Earthquake 99" project and from the Forintek – Tongji University tests of conventional wood-frame construction. They will then be employed in the determination of the seismic response of houses as prescribed by the seismic part of the Engineering Guide for Wood Frame Construction published by the Canadian Wood Council.
Earthquakes, Effect on building construction
Building construction - Design
Documents
Less detail

Lateral load resisting systems for engineered wood construction

https://library.fpinnovations.ca/en/permalink/fpipub37878
Author
Popovski, Marjan
Date
March 2008
Material Type
Research report
Field
Sustainable Construction
Author
Popovski, Marjan
Contributor
Canada. Canadian Forest Service.
Date
March 2008
Material Type
Research report
Physical Description
8 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wind loads
Wind
Loads
Design
Building construction
Series Number
Canadian Forest Service No. 27
W-2517
Location
Vancouver, British Columbia
Language
English
Abstract
Support industry to expand its markets for wood and wood products by providing designers and specifiers with design provisions and practical design solutions for wood-based lateral load resisting systems in engineered wood construction. This four-year project will address two main issues:
Develop and compile the fundamental information needed to establish a Lateral Load Resisting Systems Design Section in CSA O86, which will be consistent with the 2005 edition of the National Building Code of Canada (NBCC 2005).
Develop and compile the information needed to link the new Lateral Load Resisting Systems Design Section in CSA O86 with the Fastenings Section in terms of connection behaviour required to satisfy the specified system response to lateral loading.
Earthquakes - Effect on building construction
Wind loads
Building construction - Design
Documents
Less detail

Wind and earthquake design provisions for small wood buildings

https://library.fpinnovations.ca/en/permalink/fpipub37879
Author
Ni, Chun
Mohammad, M.
Date
March 2008
Material Type
Research report
Field
Sustainable Construction
Author
Ni, Chun
Mohammad, M.
Contributor
Canada. Canadian Forest Service.
Date
March 2008
Material Type
Research report
Physical Description
8 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood
Wind loads
Wind
Materials
Loads
Design
Building construction
Series Number
Canadian Forest Service No. 30
Project No. 4640 West; 5317 East
W-2518
Location
Vancouver, British Columbia
Language
English
Abstract
This project aims to capitalize on seismic and wind performance of wood frame construction under extreme wind and earthquake loads and make incremental improvements in wind and seismic design procedures. This year seismic work focused on laboratory testing to evaluate the corner wall and upper storeys on the lateral load capacities of braced walls, and the development of a mechanics-based model to accurately predict the lateral load capacities of braced walls with openings. Wind research work focused on the test house in Fredericton, NB and related activities on modelling.
Wind loads
Earthquakes - Effect on building construction
Building construction - Design
Wood - Construction Materials - Environmental Aspects
Documents
Less detail

Structural performance of wood diaphragms with thick panels

https://library.fpinnovations.ca/en/permalink/fpipub37881
Author
Pirvu, Ciprian
Date
March 2008
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2008
Material Type
Research report
Physical Description
70 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Mechanical properties
Design
Building construction
Series Number
Canadian Forest Service No. 13
4636
W-2525
Location
Vancouver, British Columbia
Language
English
Abstract
Wood design standards in Canada and the United States provide design values for floor and roof diaphragms with sheathing thickness ranging from 9.5 mm (3/8 in) up to 18.5 mm (3/4 in), that are supported by joists spaced less than 610 mm (24 in) on centre. This range of sheathing thicknesses is adequate for housing and small buildings, but for large non-residential structures, diaphragms with thicker sheathing and wider joist spacing may be more appropriate. This paper includes the findings of a study aimed at providing research information suitable for implementing design values for diaphragms with thick sheathing in the North American wood design standards. Results from quasi-static monotonic tests on fifteen full-scale 7.3 m (24 ft) long by 2.4 m (8 ft) wide diaphragms framed with 38x191 mm or 38x235 mm (nominal 2x8 and 2x10, respectively) solid sawn lumber or laminated strand lumber and sheathed with plywood or oriented strand board are discussed. A numerical model was developed using the finite element method. The basic properties of the sheathing, framing members and nailed connections were implemented in the model to replicate the structural behaviour of the diaphragms with thick panels. The numerical model was successfully validated against the experimental data. The shear resistance values for the diaphragms with thick panels tested in this study were calculated. The model may be used to interpolate between various diaphragm configurations and calculate shear resistance values for other configurations of diaphragms with thick sheathing. In the long run, it is hoped that the use of thicker sheathing will enable the use of structural systems that are cost effective for wider joist or beam spacing than systems made with dimension lumber and traditional sheathing thickness. The experimental data and the model developed in this project will be used to develop proposals for implementation of wood floor and roof diaphragms with thick panels in the Canadian and United States wood design standards.
Diaphragms - Strength
Building construction - Design
Documents
Less detail

6 records – page 1 of 1.