Thirty full-length sample trees from the B.C. Interior were selected for a study to determine whether external log characteristics can predict internal log quality. The sample trees were also used to create 3-dimensional log images for sawmill simulation purposes. "LogSaw", a simulation tool with internal log defect detection capabilities, was used to explore the extent to which internal and external log quality information can improve log breakdown optimization. A model of a hypothetical sawmill producing lumber for the standard North American dimension market was created to study how lumber value recovery depends on different sawing optimization scenarios.
Three sawing optimization scenarios using different levels of knowledge of internal log defects were compared to currently used sawing optimization technique:
Ideal sawing optimization - all defects within log interior are known.
Sawing optimization using only the knowledge of surface knots.
Sawing optimization using log rotation instructions based on zones of least external knot density.
Simulation results have shown that it is worthwhile to “look into the log”. When compared with the current optimization technique, the sawing optimization, including the full knowledge of log interior, has increased the value recovery by 6.2%. When only the surface knots were projected into the log interior and included in the optimization, the value recovery had increased by 4.3%. Even this 4.3% increase is still a big improvement because this sawing optimization could be implemented using currently available scanning technologies and optimization software enhanced to include log surface knots. The scenario of using log rotation instructions based on predicted zones of least internal knot density did not show value recovery improvement.
Including surface knots in the log breakdown optimization has considerably increased sawmill revenue; the hypothetical sawmill considered in this study, processing 400,000 m3 of log per year, has increased its revenue by $2.2 million.
The Canadian lumber industry has identified, as a high priority, the establishment of a multi-year Lumber Properties Program that pulls together a number of urgent initiatives currently underway to establish and/or maintain Canadian lumber design values. The desire is to have an overall program that emphasizes the proper development of a longer-term strategic plan and process to deal with current and future initiatives. Combining the current industry resources with Federal Government contributions through Natural Resources Canada (NRCan), the first step in the Program has been completed: to gather the various initiatives now underway and to begin the formal development of pan-Canadian policies to guide the development, implementation and on-going maintenance of such initiatives.
The key activities in 2006-07 were:
Launching of the pilot phase of the on-going monitoring program, and development of a simulation model to assist in determining what sort of trends can be reliably detected and which cannot;
Completion of the in-grade testing program on Canadian Norway spruce;
Analysis of the No.2 2x4 Hem-Fir (N) monitoring study and confirmation of the appropriateness of assigned design values;
Identification of an alternative species grouping procedure for further study;
Starting of a process under the ASTM Committee on Wood to address gaps in the Grade Quality Index provisions in ASTM Practice D1990, and
Establishing a forum for engaging the US in discussions on lumber properties issues.
Lumber properties issues crucial to maintaining the competitiveness of Canadian lumber continue to be the same as in previous years: tests and means to adjust for sample representativeness using the Grade Quality Index (GQI), species grouping and re-grouping procedures, and on-going lumber monitoring. As a result, discussion on a pan-Canadian strategy and supporting policies necessary to support Canadian lumber initiatives tend to focus on these three issues. The challenge is to ensure that these issues are dealt with in a way that balances both short and longer-term needs and provides a net overall benefit to the Canadian industry.