Skip header and navigation

2 records – page 1 of 1.

Advanced wood-based solutions for mid-rise and high-rise construction: Mid-rise wood exit shaft demonstration fire test report

https://library.fpinnovations.ca/en/permalink/fpipub49832
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Date
April 2018
Material Type
Research report
Field
Sustainable Construction
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Contributor
Natural Resources Canada. Canadian Forest Service
Date
April 2018
Material Type
Research report
Physical Description
48 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Fire
Building code
Residential construction
Language
English
Abstract
FPInnovations conducted a research project to study the construction of mid-rise wood exit shafts in Ontario and Québec. The scope of the project included an investigation into the concerns that have been raised in regards to the use of wood exits in mid-rise buildings, an analysis of recent Canadian fire statistics in residential multi-family structures, and a fire demonstration of a mass timber wall and supported light-frame floor. This report describes the fire demonstration completed as part of this project; this report acts as a supplement to the full project report.
Documents
Less detail

Encapsulation of mass timber floor surfaces, report to Forestry Innovation Investment Ltd.

https://library.fpinnovations.ca/en/permalink/fpipub53043
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Date
March 2020
Material Type
Report
Field
Sustainable Construction
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2020
Material Type
Report
Physical Description
55 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood
Fire
Design
Building code
Floors
Fire tests
Residential construction
Language
English
Abstract
Currently, mass timber building designs commonly incorporate a concrete floor topping. This can improve building accoustics by increasing the mass of the assembly, reduce floor vibration and create a smooth flat surface to install finish flooring on. The installation of concrete requires formwork, pouring and finishing the concrete and time to cure which adds to project schedules. One way to address this is to use mass timber elements that are prefabricated with concrete toppings preinstalled. Replaceing the concrete floor toppings wiht dry alternatives, such as cement board, may also reduce construction timelines, while still ensuring adequate acoustic and vibration performance. Cement board needs only to be screwed in place and can be walked on immediately after installation; this reduction in construction time may reduce overall project costs and help make wood buildings more cost competitive than other types of construction.
Documents
Less detail