This guide explores how the building industry in British Columbia can meet the challenges of reducing energy use in buildings, in part by effectively accounting for the impact of thermal bridging.
Most practitioners will find PART1 and Appendices A and B to be most useful. PART 1 outlines how to effectively account for thermal bridging. Appendices A and B provide a catalog of common building envelope assemblies and interface details, and their associated thermal performance data.
Researchers and regulators will be interested in PART 2 and PART 3, and Appendices C to E. They contain the cost-benefit analysis, and discussion on significance and further insights, of using this guide to mitigate thermal bridging in buildings.
[Available to the public: http://www.bchydro.com/powersmart/business/programs/new-construction.html?WT.mc_id=rd_construction]
Diaphragms are essential to transfer lateral forces in the plane of the diaphragms to supporting shear walls underneath. As the distribution of lateral force to shear walls is dependent on the relative stiffness/flexibility of diaphragm to the shear walls, it is critical to know the stiffness of both diaphragm and shear walls, so that appropriate lateral force applied on shear walls can be assigned.
In design, diaphragms can be treated as flexible, rigid or semi-rigid. For a diaphragm that is designated as flexible, the in-plane forces can be assumed to be distributed to the shear walls according to the tributary areas associated with each shear wall. For a diaphragm that is designated as rigid, the loads are assumed to be distributed according to the relative stiffness of the shear walls, with consideration of additional shear force due to torsion for seismic design. In reality, diaphragm is neither purely flexible nor completely rigid, and is more realistically to be treated as semi-rigid. In this case, computer analysis using either plate or diagonal strut elements can be used and the load-deflection properties of the diaphragm will result in force distribution somewhere between the flexible and rigid models. However, alternatively envelope approach which takes the highest forces from rigid and flexible assumptions can be used as a conservative estimation in lieu of computer analysis.