Skip header and navigation

6 records – page 1 of 1.

Advanced wood-based solutions for mid-rise and high-rise construction: analytical models for balloon-type CLT shear walls

https://library.fpinnovations.ca/en/permalink/fpipub52680
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Date
July 2018
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Contributor
Natural Resources Canada. Canadian Forest Service
Date
July 2018
Material Type
Research report
Physical Description
83 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber
Performance
Building construction
Building materials
Energy
Language
English
Abstract
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: modelling of timber connections under force and fire

https://library.fpinnovations.ca/en/permalink/fpipub49851
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Date
March 2018
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Material Type
Research report
Physical Description
85 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber
Fire
Performance
Timber
Language
English
Abstract
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections, in particular under combination of various types of loads and fire, was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models for use in performance-based design for wood buildings, in particular, seismic and fire performance-based design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine and can be added to most general-purpose finite element software. The developed model was used to model the structural performance of a laminated veneer lumber (LVL) beam and a glulam bolted connection under force and/or fire. Compared with the test results, it shows that the developed model was capable of simulating the mechanical behaviour of LVL beam and glulam connection under load and/or fire with fairly good correlation. With this model, it will allow structural designers to obtain the load-displacement curve of timber connections under force, fire or combination of the two. With this, key design parameters such as capacity, stiffness, displacement and ductility, which are required for seismic or fire design, can be obtained. It is recommended that further verification and calibration of the model be conducted on various types of wood products, such as CLT, glulam, SCL and NLT, and fasteners, e.g. screw and rivet. Moreover, a database of the thermal and structural properties of the wood members and fasteners that are commonly used in timber constructions need to be developed to support and facilitate the application of the model.
Documents
Less detail

Expanding wood use towards 2025: seismic performance of midply shear walls

https://library.fpinnovations.ca/en/permalink/fpipub7699
Author
Chen, Zhiyong
Ni, Chun
Karacabeyli, Erol
Yeh, Borjen
Line, Philip
Date
March 2020
Edition
52949
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Ni, Chun
Karacabeyli, Erol
Yeh, Borjen
Line, Philip
Contributor
Engineered Wood Assocation (APA)
American Wood Council (AWC)
Date
March 2020
Edition
52949
Material Type
Research report
Physical Description
47 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber (CLT)
Performance
Building construction
Building materials
Seismic
Shear walls
Standards
Series Number
Expanding wood use towards 2025
Language
English
Abstract
Midply shear wall (hereafter Midply), which was originally developed by researchers at Forintek Canada Corp. (predecessor of FPInnovations) and the University of British Columbia, is a high-capacity shear wall system that is suitable for high wind and seismic loadings. Its superior seismic performance was demonstrated in a full-scale earthquake simulation test of a 6-storey wood-frame building in Japan. In collaboration with APA–The Engineered Wood Association and the American Wood Council (AWC), a new framing arrangement was designed in this study to increase the vertical load resistance of Midply and make it easier to accommodate electrical and plumbing services. In this study, a total of 14 Midply specimens in six wall configurations with different sheathing thicknesses and nail spacing were tested under reversed cyclic loading. Test results showed that Midply has approximately twice the lateral load capacity of a comparable standard shear wall. The drift capacity and energy dissipation capability are also greater than comparable standard shear walls. For Midply to use the same seismic force modification factors as standard shear walls, seismic equivalency to standard shear walls in accordance with ASTM D7989 was also conducted. Although Midply has superior lateral load and drift capacities, it does not seem to be as ductile as the standard shear walls at the same over-strength level. Additional testing and dynamic analysis are recommended to address this issue.
Documents
Less detail

Seismic response of mid-rise wood-frame buildings on podium

https://library.fpinnovations.ca/en/permalink/fpipub49447
Author
Chen, Zhiyong
Ni, Chun
Date
March 2017
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Ni, Chun
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2017
Material Type
Research report
Physical Description
37 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Building construction
Seismic
Structural design
Walls
Language
English
Abstract
An analytical study to examine the seismic performance of wood-frame podium buildings up to 8 storeys is presented in this report. Simple archetype podium buildings of 5 to 8 storeys in total height were designed in accordance with the two-step analysis procedure given in 2015 NBCC or ASCE 7-10. Nonlinear time-history dynamic analyses were conducted using earthquake ground motions selected and scaled based on the guidelines proposed by Tremblay et al. to match the reference design spectra in NBCC. Using the performance-based seismic design criteria established in the NEESWood project, it was found that:
Podium buildings with a building period ratio of 1.1 (ASCE 7-10) did not meet the performance criteria, thus the period ratio requirement of 1.1 was not appropriate.
A stiffness ratio of not less than 10 times (ASCE 7-10) was more appropriate as a requirement of using two-step analysis procedure for wood-frame podium buildings up to 8 storeys, compared to that of not less than 3 times (NBCC Commentary). With a higher stiffness ratio, the seismic response of the upper wood-frame structure of podium building was closer to that of the pure wood-frame structure. The results of this study will be used to guide the assessment of the feasibility of constructing wood-frame podium buildings of 8 storeys in height and the development of design guidelines. This would also guide the longer-term goal of proposing changes to the building codes.
Documents
Less detail

WoodST: an advanced modelling tool for fire safety analysis of timber structures

https://library.fpinnovations.ca/en/permalink/fpipub7943
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
January 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
January 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Models
Performance
Timber
Language
English
Abstract
WoodST is capable of calculating heat transfer, charring rate, load-displacement curve as well as the time and mode of failure of timber structures exposed to fire, thus providing a cost-competitive solution for the fire safety analysis of timber structures. This InfoNote briefly introduces the development and verification of WoodST. Two applications of WoodST are also demonstrated.
Documents

InfoNote2021N1E.pdf

Read Online Download
Less detail

WoodST: outil de modélisation avancé pour l'analyse de la sécurité incendie des structures en bois

https://library.fpinnovations.ca/en/permalink/fpipub7944
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
Janvier 2021
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
Janvier 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Models
Performance
Timber
Language
French
Abstract
WoodST est capable de calculer le transfert de chaleur, la vitesse de carbonisation, la courbe charge-déplacement ainsi que le moment et le mode de défaillance des structures en bois exposées au feu, offrant ainsi une solution à coût compétitif pour l'analyse de la sécurité incendie des ossatures en bois. La présente note d’information présente brièvement le développement et la vérification de WoodST. Deux applications de WoodST sont également présentées.
Documents

InfoNote2021N1F.pdf

Read Online Download
Less detail

6 records – page 1 of 1.