Skip header and navigation

12 records – page 1 of 2.

Advanced wood-based solutions for mid-rise and high-rise construction: acoustic performance of innovative composite wood stud partition walls

https://library.fpinnovations.ca/en/permalink/fpipub49838
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Deng, James
Wang, Xiang-Ming
Date
April 2018
Material Type
Research report
Field
Sustainable Construction
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Deng, James
Wang, Xiang-Ming
Contributor
Natural Resources Canada. Canadian Forest Service
Date
April 2018
Material Type
Research report
Physical Description
25 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Vibration
Design
Walls
Studs
Language
English
Abstract
Airborne sound insulation performance of wall assemblies is a critical aspect which is directly associated with the comfort level of the occupants, which in turn affects the market acceptance.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: analytical models for balloon-type CLT shear walls

https://library.fpinnovations.ca/en/permalink/fpipub52680
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Date
July 2018
Material Type
Research report
Field
Sustainable Construction
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Contributor
Natural Resources Canada. Canadian Forest Service
Date
July 2018
Material Type
Research report
Physical Description
83 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber
Performance
Building construction
Building materials
Energy
Language
English
Abstract
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: in-situ testing of the arbora building for vibration and acoustic performances

https://library.fpinnovations.ca/en/permalink/fpipub49836
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Date
April 2018
Material Type
Research report
Field
Sustainable Construction
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Contributor
Natural Resources Canada. Canadian Forest Service
Date
April 2018
Material Type
Research report
Physical Description
40 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Vibration
Design
Beams
Floors
Language
English
Abstract
This report addresses serviceability issues of tall wood buildings focusing on vibration and sound insulation performance. The sound insulation and vibration performance may not affect building's safety, but affects occupants' comfort and proper operation of the buildings and the funciton of sensitive equipment, consequently the acceptance of midrise and tall wood buildings in market place. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: in-situ testing of the Brock Commons 18-Storey building for vibration and acoustic performances

https://library.fpinnovations.ca/en/permalink/fpipub49837
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Date
April 2018
Material Type
Research report
Field
Sustainable Construction
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Contributor
Natural Resources Canada. Canadian Forest Service
Date
April 2018
Material Type
Research report
Physical Description
42 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Vibration
Design
Beams
Floors
Series Number
Transformative Technology ; TT 2018
Language
English
Abstract
This report addresses serviceability issues of tall wood buildings focusing on their vibration and sound insulation performance. The sound insulation and vibration performance may not affect the building’s safety, but affects the occupants’ comfort and the proper operation of the buildings and the function of sensitive equipment, consequently the acceptance of the midrise and tall wood buildings in market place. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. The measured and estimated values should also be correlated with actual experiences of the occupants in the building if such information is obtained, for example, through a survey.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: in-situ testing of the Origine 13-storey building for vibration and acoustic performances

https://library.fpinnovations.ca/en/permalink/fpipub49852
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Date
March 2018
Material Type
Research report
Field
Sustainable Construction
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Material Type
Research report
Physical Description
46 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Vibration
Design
Beams
Floors
Language
English
Abstract
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. survey.
Documents
Less detail

Depuis le Canada vers le reste du monde: Recherche et mise en oeuvre du code relatif aux vibrations des planchers de 3e génération

https://library.fpinnovations.ca/en/permalink/fpipub7940
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Qian, Cheng
Dale, Angela
Date
Janvier 2021
Material Type
research report
Field
Sustainable Construction
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Qian, Cheng
Dale, Angela
Date
Janvier 2021
Material Type
research report
Physical Description
4 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Design
Floor
Mass timber
Performance
Standards
Vibration
Series Number
InfoNote; 2021 n.2
Language
French
Abstract
Comme l'ont démontré le développement et la mise en oeuvre des codes des méthodes de conception de troisième génération pour lutter contre les vibrations des planchers, FPInnovations joue un rôle important au Canada et à l'échelle internationale dans les comités de codes et de normes visant à protéger les consommateurs et l'industrie du bois et contribue à la croissance continue du marché de la construction en bois à l'échelle mondiale.
Documents

InfoNote2021N2F.PDF

Read Online Download
Less detail

Design guide for timber-concrete composite floors in Canada

https://library.fpinnovations.ca/en/permalink/fpipub52903
Author
Cuerrier-Auclair, Samuel
Date
March 2020
Material Type
guide
Research report
Field
Sustainable Construction
Author
Cuerrier-Auclair, Samuel
Contributor
Forestry Innovation Investment
Date
March 2020
Material Type
guide
Research report
Physical Description
99 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Canada
Concrete
Floors
Design
Structural composites
Wood
Laminate product
Veneer
Series Number
SP-540E
Location
Pointe-Claire, Quebec
Language
English
ISBN
9780864885967
ISSN
19250495
Abstract
In the construction of buildings, the timber-concrete (TCC) system can be a cost-competitive solution for floors with longer spans, since the mechanical properties of the two materials are used efficiently. Furthermore, the additional mass from the concrete improves the acoustic performance compared to a timber floor system alone. Nevertheless, TCC floors are not commonly used in buildings in Canada, due to the absence of technical guidelines for such types of structural systems in this country.
Documents
Less detail

Dynamic properties of tall mass timber buildings under wind-induced vibration

https://library.fpinnovations.ca/en/permalink/fpipub53027
Author
Cuerrier-Auclair, Samuel
Date
April 2016
Material Type
Research report
Field
Wood Manufacturing & Digitalization
Author
Cuerrier-Auclair, Samuel
Contributor
Forestry Innovation Investment
Date
April 2016
Material Type
Research report
Physical Description
2 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Structural composites
Wood
Laminate product
Veneer
Floors
Series Number
E-4960
Location
Québec, Québec
Language
English
Abstract
FPInnovations launched a multi-year research project to measure mid- to high-rise wood buildings’ natural frequencies and damping ratios to expand the database and validate or adapt the existing equations to estimate the natural frequencies. Two high-rise wood buildings equipped with an anemometer and accelerometers are also being constantly monitored to study how the wind excites the building.
Documents

InfoNote2020N7E.pdf

Read Online Download
Less detail

Fire-resistance of timber-concrete composite floor using laminated veneer lumber

https://library.fpinnovations.ca/en/permalink/fpipub40133
Author
Ranger, Lindsay
Dagenais, Christian
Cuerrier-Auclair, Samuel
Date
April 2016
Material Type
Research report
Field
Wood Manufacturing & Digitalization
Author
Ranger, Lindsay
Dagenais, Christian
Cuerrier-Auclair, Samuel
Contributor
Forestry Innovation Investment
Date
April 2016
Material Type
Research report
Physical Description
28 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Fire
Resistance
Structural composites
Wood
Concrete
Laminate product
Veneer
Floors
Series Number
E-4960
Location
Québec, Québec
Language
English
Abstract
There is a need to demonstrate how novel timber-concrete composite floors can span long distances and be a practical alternative to other traditional structural systems. Better understanding of the fire behaviour of these hybrid systems is essential. To achieve this, the fire-resistance of a timber-concrete composite floor assembly, using BC wood products, will be evaluated in accordance with CAN/ULC-S101 [2]. A 2 hr fire resistance rating will be targeted, as this is the current requirement in high-rise buildings for floor separations between occupancies. The structural behaviour of this type of system will also be assessed from conducting pull-out tests of the shear connectors. In conjunction with previous test data, the results of this test will be used to develop an analytical model to assess the structural and fire-resistance of timber-concrete composite floors. 301010618
Documents
Less detail

From Canada to the world: FPInnovations' three-generation floor vibration research and code implementation

https://library.fpinnovations.ca/en/permalink/fpipub7936
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Qian, Cheng
Dale, Angela
Date
January 2021
Material Type
research report
Field
Sustainable Construction
Author
Hu, Lin J.
Cuerrier-Auclair, Samuel
Qian, Cheng
Dale, Angela
Date
January 2021
Material Type
research report
Physical Description
3 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Design
Floor
Mass timber
Performance
Standards
Vibration
Series Number
InfoNote; 2021 n.2
Language
English
Abstract
FPInnovations’ three-generation floor vibration-controlled design methods in NBCC and CSA O86 ensure market acceptance by consumers. Since 1990, there have been very few consumer complaints. This reinforces the use of wood as a quality building material and contributes to expanding market shares of wood construction in Canada.
Documents

InfoNote2021N2E.PDF

Read Online Download
Less detail

12 records – page 1 of 2.