Skip header and navigation

5 records – page 1 of 1.

In-situ testing of wood innovation and design centre: floor vibration, building vibration, and sound insulation performance

https://library.fpinnovations.ca/en/permalink/fpipub53039
Author
Hu, Lin J.
Pirvu, Ciprian
Ramzi, Redouane
Date
July 2015
Material Type
Research report
Field
Sustainable Construction
Author
Hu, Lin J.
Pirvu, Ciprian
Ramzi, Redouane
Contributor
Forestry Innovation Investment
Date
July 2015
Material Type
Research report
Physical Description
49 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Testing
Performance
Wood
Buildings
Language
English
Abstract
This report describes the building, tested floor and wall assemblies, test methods, and summarizes the test results. The preliminary performance data provides critical feedback on the design of the building for resisting wind-induced vibration and on the floor vibration controlled design. The data can be further used to validate the calculation methods and tools/models of dynamic analysis. Originally confidential to FII, they have provided permission to make the report available.
Documents
Less detail

Load duration test protocols for engineered wood products

https://library.fpinnovations.ca/en/permalink/fpipub37951
Author
Pirvu, Ciprian
Date
March 2009
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2009
Material Type
Research report
Physical Description
12 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Mechanical properties
Materials
Building construction
Series Number
Canadian Forest Service No. 4
W-2653
Location
Vancouver, British Columbia
Language
English
Abstract
The objective of the project is to develop/improve practical, reliable and internationally recognized methods for assessing/pre-screening the long-term structural performance of engineered wood products used in residential and non-residential applications.
Building construction - Materials used - Strength
Documents
Less detail

Structural performance of wood diaphragms with thick panels

https://library.fpinnovations.ca/en/permalink/fpipub37881
Author
Pirvu, Ciprian
Date
March 2008
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2008
Material Type
Research report
Physical Description
70 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Mechanical properties
Design
Building construction
Series Number
Canadian Forest Service No. 13
4636
W-2525
Location
Vancouver, British Columbia
Language
English
Abstract
Wood design standards in Canada and the United States provide design values for floor and roof diaphragms with sheathing thickness ranging from 9.5 mm (3/8 in) up to 18.5 mm (3/4 in), that are supported by joists spaced less than 610 mm (24 in) on centre. This range of sheathing thicknesses is adequate for housing and small buildings, but for large non-residential structures, diaphragms with thicker sheathing and wider joist spacing may be more appropriate. This paper includes the findings of a study aimed at providing research information suitable for implementing design values for diaphragms with thick sheathing in the North American wood design standards. Results from quasi-static monotonic tests on fifteen full-scale 7.3 m (24 ft) long by 2.4 m (8 ft) wide diaphragms framed with 38x191 mm or 38x235 mm (nominal 2x8 and 2x10, respectively) solid sawn lumber or laminated strand lumber and sheathed with plywood or oriented strand board are discussed. A numerical model was developed using the finite element method. The basic properties of the sheathing, framing members and nailed connections were implemented in the model to replicate the structural behaviour of the diaphragms with thick panels. The numerical model was successfully validated against the experimental data. The shear resistance values for the diaphragms with thick panels tested in this study were calculated. The model may be used to interpolate between various diaphragm configurations and calculate shear resistance values for other configurations of diaphragms with thick sheathing. In the long run, it is hoped that the use of thicker sheathing will enable the use of structural systems that are cost effective for wider joist or beam spacing than systems made with dimension lumber and traditional sheathing thickness. The experimental data and the model developed in this project will be used to develop proposals for implementation of wood floor and roof diaphragms with thick panels in the Canadian and United States wood design standards.
Diaphragms - Strength
Building construction - Design
Documents
Less detail

Structural performance of wood diaphragms with thick panels

https://library.fpinnovations.ca/en/permalink/fpipub37788
Author
Pirvu, Ciprian
Date
March 2006
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2006
Material Type
Research report
Physical Description
4 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Structural analysis
Design
Building construction
Analysis
Series Number
Canadian Forest Service No. 13
W-2275
Location
Vancouver, British Columbia
Language
English
Abstract
This report describes work to provide research information suitable for implementing design procedures for diaphragms with thick sheathing in the Canadian Standard for Engineering Design in Wood (CAN/CSA O86.1) and to make the information available to other markets by publishing the results and recommended procedures in a journal article.
Structural analysis
Diaphragm analysis
Building construction - Design
Documents
Less detail

Structural performance of wood diaphragms with thick panels

https://library.fpinnovations.ca/en/permalink/fpipub37821
Author
Pirvu, Ciprian
Date
March 2007
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2007
Material Type
Research report
Physical Description
10 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Structural analysis
Design
Building construction
Analysis
Series Number
Canadian Forest Service No. 13;4636
W-2396
Location
Vancouver, British Columbia
Language
English
Abstract
The objectives of this project are to provide research information suitable for implementing design procedures for diaphragms with thick sheathing in the Canadian Standard for Engineering Design in Wood (CAN/CSA O86.1) and to make the information available to other markets by publishing the results and recommended procedures in a journal article.
Structural analysis
Diaphragm analysis
Building construction - Design
Documents
Less detail