Skip header and navigation

23 records – page 2 of 3.

Fabrication du bois lamellé-croisé (CLT)

https://library.fpinnovations.ca/en/permalink/fpipub42935
Author
Wang, Brad J.
Pirvu, Ciprian
Lum, Conroy
Date
January 2011
Material Type
Research report
Field
Sustainable Construction
collé. 3. Construction en bois d’ingénierie. I. Gagnon, Sylvain, 1970- . II. Pirvu, Ciprian, 1968
Author
Wang, Brad J.
Pirvu, Ciprian
Lum, Conroy
Date
January 2011
Material Type
Research report
Physical Description
70 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Timber
Laminate product
Building construction
Design
Language
French
Abstract
Le présent chapitre fournit de l’information générale sur la fabrication du CLT qui peut être intéressante pour les concepteurs. Les renseignements contenus dans ce chapitre peuvent également servir de guide aux fabricants de CLT quant au développement de leur cahier de spécifications d'exploitation d'usine. Ce chapitre aborde également les étapes spécifiques du processus de fabrication de CLT et les variables de processus clés qui ont une incidence sur la qualité d’adhésion des lamelles des produits de CLT. On y retrouve également les méthodes proposées pour évaluer la qualité des panneaux.
Documents
Less detail

Increasing adhesive choices in engineered wood products that meet market requirements

https://library.fpinnovations.ca/en/permalink/fpipub41381
Author
Pirvu, Ciprian
Date
March 1907
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Alberta Forestry Research Institute
Date
March 1907
Material Type
Research report
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Materials
Adhesives
Series Number
W-2481
Location
Vancouver, British Columbia
Language
English
Abstract
Test results for three representative adhesives were obtained for use in the development of a proposed standard for limited moisture exposure (CSA O112.10). The adhesives tested were an emulsion polymer isocyanate (EPI), a polyurethane (PUR) and a melamine-urea formaldehyde with 40% melamine resin content (MUF40). Currently, EPI and PUR are used for I-joists and fingerjoined lumber. MUF40 was included in the study as a non-conforming adhesive. The range of performance of these adhesives, along with that of melamine formaldehyde (MF) and polyvinyl acetate (PVA) evaluated in a previous study, is baseline information used in defining acceptable performance levels for adhesives undergoing block shear tests required in the proposed standard. Specimens in this study were evaluated under five test conditions: dry, vacuum-pressure wet or re-dried, and three-cycle boil-dry-freeze wet or re-dried. Dry and re-dried test conditions are the proposed test protocols for the draft CSA O112.10 standard. In terms of shear strength and percentage of wood failure, EPI and MUF40 met the requirements of CSA O112.9 for the dry test condition, and PUR did not. The following block shear test requirements are recommended for CSA O112.10, based on the 95% lower confidence limit of the EPI test results, and structured to be analogous to the requirements of CSA O112.9:
Median dry shear strength = 10 MPa (1450 psi) (adopted from CSA O112.9);
Vacuum-pressure re-dried median shear strength = 7.4 MPa (1070 psi);
Three-cycle boil-dry-freeze re-dried median shear strength = 4.4 MPa (640 psi);
Median percentage wood failure = 85% for all the proposed tests (adopted from CSA O112.9); and
Lower quartile percentage wood failure = 75% for all the proposed tests (adopted from CSA O112.9). The above requirements will be discussed in the CSA Task Group, which will eventually make recommendations to the CSA Standards Committee.
Adhesion and Adhesives - Composite Materials
Documents
Less detail

In-situ testing of wood innovation and design centre: floor vibration, building vibration, and sound insulation performance

https://library.fpinnovations.ca/en/permalink/fpipub53039
Author
Hu, Lin J.
Pirvu, Ciprian
Ramzi, Redouane
Date
July 2015
Material Type
Research report
Field
Sustainable Construction
Author
Hu, Lin J.
Pirvu, Ciprian
Ramzi, Redouane
Contributor
Forestry Innovation Investment
Date
July 2015
Material Type
Research report
Physical Description
49 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Testing
Performance
Wood
Buildings
Language
English
Abstract
This report describes the building, tested floor and wall assemblies, test methods, and summarizes the test results. The preliminary performance data provides critical feedback on the design of the building for resisting wind-induced vibration and on the floor vibration controlled design. The data can be further used to validate the calculation methods and tools/models of dynamic analysis. Originally confidential to FII, they have provided permission to make the report available.
Documents
Less detail

Load duration test protocols for engineered wood products

https://library.fpinnovations.ca/en/permalink/fpipub37951
Author
Pirvu, Ciprian
Date
March 2009
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2009
Material Type
Research report
Physical Description
12 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Mechanical properties
Materials
Building construction
Series Number
Canadian Forest Service No. 4
W-2653
Location
Vancouver, British Columbia
Language
English
Abstract
The objective of the project is to develop/improve practical, reliable and internationally recognized methods for assessing/pre-screening the long-term structural performance of engineered wood products used in residential and non-residential applications.
Building construction - Materials used - Strength
Documents
Less detail

NSERC innovation : hybrid structural wood composites for non-residential construction

https://library.fpinnovations.ca/en/permalink/fpipub41325
Author
Pirvu, Ciprian
Date
March 2005
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Natural Sciences Engineering Research Council
Date
March 2005
Material Type
Research report
Physical Description
10 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Mechanical properties
Research
Physical properties
Materials
Series Number
W-2197
Location
Vancouver, British Columbia
Language
English
Abstract
In recent years, significant attention has been paid to the engineering performance of wood structural systems, and a new generation of more reliable engineered wood components for building construction has evolved. The latest trend is towards advanced products that combine wood and synthetics. This increases performance and structural reliability of engineered wood products, and leads to new markets and expanded opportunities. It is anticipated that cost of fibre reinforcement decreases over time and advances developed on reinforcing techniques and methods of evaluation would provide wood producers with more options to better position their products in the marketplace. A new reinforcing technique has been developed and applied to manufacture a hybrid wood product for structural applications. The technique involves a layering analogy using layers of synthetic reinforcement sandwiched between layers of wood composite. The products manufactured in the laboratory used regular OSB laminations and alternating layers of E-glass fabrics and resin. Three- and four-ply billets were manufactured with various layouts and then tests were conducted to characterize mechanical properties of the hybrid products. Overall, the test specimens performed well relative to the controls. Shear failures were observed as a result of the limited performance of OSB in shear, and consequently the next tests will be conducted with plywood laminations instead of OSB. Selected issues related to code acceptance of structural FRP-reinforced wood products are discussed in the appendix. Future work is suggested to completely characterize and understand the properties and behaviour of the FRP-reinforced wood products, including fire performance, long term durability, maintenance and cost, in order to establish an environment in which to work comfortably with such materials. Overcoming these issues is vital for product acceptance in building codes.
Composite materials - Physical properties
Composite materials - Research
Composite materials - Strength
Documents
Less detail

Opportunities for glued wood products. Final report

https://library.fpinnovations.ca/en/permalink/fpipub41349
Author
Pirvu, Ciprian
Date
March 2006
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Alberta Forestry Research Institute
Date
March 2006
Material Type
Research report
Physical Description
36 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Markets
Alberta
Series Number
W-2302
Location
Vancouver, British Columbia
Language
English
Abstract
With recent pressures to extract more value from the Alberta wood resource, efforts are being made to find higher value products that can be marketed along with SPF lumber traditionally used in the construction industry. Products such as reinforced glulam, edge glued and face glued lumber, or overlaid laminated veneer lumber provide additional opportunities for the medium-size Alberta lumber producers who are challenged by fierce competition in a commodity-focused market. Given the steady increase in the utilization of glued products in structural applications, there is a strong potential for further expansion of these markets. A recently developed standard that allows products to be manufactured from face- and edge-gluing of components paves the way for the development of a wide range of products specifically designed for the construction market. A situational analysis of the current state of the Alberta forest industry is presented here. It includes resources, markets, codes and standards, technical and market challenges, and prospects for developing higher value structural wood products by gluing wood together or reinforcing wood with other materials.
AFRI-817G-06, 5063 pertaining to Composite products - Markets; Alberta - Economic conditions
Documents
Less detail

Refinement of duration of load test protocols

https://library.fpinnovations.ca/en/permalink/fpipub39406
Author
Pirvu, Ciprian
Date
March 2012
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Natural Resources Canada. Canadian Forest Service.
Date
March 2012
Material Type
Research report
Physical Description
40 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Strength load bearing
Mechanical properties
Specifications
Loads
Specification
Series Number
Canadian Forest Service No. FRII-3.17
W-2892
Location
Vancouver, British Columbia
Language
English
Abstract
Duration of load (DOL) and creep effects characterize rheological behaviour of wood and are of critical importance to timber engineering. These effects are accounted for in the engineering design codes with adjustment factors for structural wood and wood-based products. Various methods are used worldwide for the evaluation of DOL and creep effects and for determination of appropriate adjustment factors. A review of the major international codes for engineering design in wood was carried out to understand how DOL and creep are taken into account in these codes and provide recommendations on how to level out the main differences between the codes. It is recommended to adopt an internationally recognized method for evaluation of DOL and creep, and suggestions for the contents of such a method are provided. Statisticians were engaged to evaluate the damage accumulation models used in wood industry for assessing DOL and creep effects of wood products. The research undertaken yielded answers to whether the mathematical models can be improved, if times-to-failure for ramp and constant load tests can be approximated by Weibull or log-normal distributions, and whether some model parameters can be assumed constant and other treated as random effects. An experimental study was carried out to support the statistical work. The results of the study were used in statistical simulations to estimate the parameters used in the damage accumulation models in an attempt to refine the current models.
Strength - Load bearing - Influence of duration
Strength - Load bearing - Specifications
Strength - Load bearing - Tests
Documents
Less detail

Sound insulation performance of elevator shaft walls built with nail-laminated timber panels - Exploratory tests and preliminary results

https://library.fpinnovations.ca/en/permalink/fpipub40172
Author
Pirvu, Ciprian
Date
March 2016
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2016
Material Type
Research report
Physical Description
28 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Building construction
Laminate product
Performance
Wood frame
Series Number
Midrise Wood Frame Construction
Taller and Larger Wood Buildings
W3296
Location
Vancouver, British Columbia
Language
English
Abstract
As 6-storey wood-frame, massive-timber and hybrid wood buildings are increasingly accepted by more jurisdictions across Canada, there is a need to develop reliable elevator shaft designs that meet the minimum structural, fire, and sound requirements in building codes. Elevator shaft walls constructed with wood-based materials have the advantages of material compatibility, use of sustainable materials, and ease of construction. In this exploratory study, selected elevator shaft wall designs built with nail-laminated-timber (NLT) structural elements were tested to investigate their sound insulation performance because little is known about the sound insulation performance of such wall assemblies. The tests were carried out in an acoustic mock-up facility in accordance to standard requirements, and provide preliminary data on the sound insulation performance of elevator shaft walls built with NLT panels. Four different elevator shaft walls built with NLT panels were tested and their measured apparent sound insulation class (ASTC) ratings ranged from 18 to 39 depending on their construction details. Some of the reasons that may have contributed to the ASTC ratings obtained for the elevator shaft walls described in this report as well as recommendations for future designs were provided. It is recommended to continue improving the sound insulation of elevator shaft walls built with NLT panels to meet or exceed the minimum requirements in building codes.
Documents
Less detail

State-of-the-art report on fibre reinforced polymer (FRP) utilization in wood products

https://library.fpinnovations.ca/en/permalink/fpipub41302
Author
Pirvu, Ciprian
Date
June 2004
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Date
June 2004
Material Type
Research report
Physical Description
35 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Materials
Series Number
W-2073
Location
Vancouver, British Columbia
Language
English
Abstract
Fibre-reinforced wood systems are light, strong, stiff composites that can efficiently replace larger wood members and can be relied on to provide consistent mechanical properties. This report is an introduction to fibre-reinforced wood systems for members of the Canadian wood products industry. It provides the motivation for reinforcing wood with synthetic fibres, and surveys the choice of materials and their uses. Numerous examples of current applications are discussed to demonstrate the strong and weak points of various approaches and examine the durability and management of fibre-reinforced wood products, as well as to indicate opportunities that exist for the Canadian wood products industry. This report is intended to be a useful reference for the Canadian wood products industry, and assist future developments in structural and non-structural applications of fibre-reinforced wood products.
Composite materials - Durability
Fibres
Board products - Materials used
Documents
Less detail

Structural performance of wood diaphragms with thick panels

https://library.fpinnovations.ca/en/permalink/fpipub37881
Author
Pirvu, Ciprian
Date
March 2008
Material Type
Research report
Field
Sustainable Construction
Author
Pirvu, Ciprian
Contributor
Canada. Canadian Forest Service.
Date
March 2008
Material Type
Research report
Physical Description
70 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Mechanical properties
Design
Building construction
Series Number
Canadian Forest Service No. 13
4636
W-2525
Location
Vancouver, British Columbia
Language
English
Abstract
Wood design standards in Canada and the United States provide design values for floor and roof diaphragms with sheathing thickness ranging from 9.5 mm (3/8 in) up to 18.5 mm (3/4 in), that are supported by joists spaced less than 610 mm (24 in) on centre. This range of sheathing thicknesses is adequate for housing and small buildings, but for large non-residential structures, diaphragms with thicker sheathing and wider joist spacing may be more appropriate. This paper includes the findings of a study aimed at providing research information suitable for implementing design values for diaphragms with thick sheathing in the North American wood design standards. Results from quasi-static monotonic tests on fifteen full-scale 7.3 m (24 ft) long by 2.4 m (8 ft) wide diaphragms framed with 38x191 mm or 38x235 mm (nominal 2x8 and 2x10, respectively) solid sawn lumber or laminated strand lumber and sheathed with plywood or oriented strand board are discussed. A numerical model was developed using the finite element method. The basic properties of the sheathing, framing members and nailed connections were implemented in the model to replicate the structural behaviour of the diaphragms with thick panels. The numerical model was successfully validated against the experimental data. The shear resistance values for the diaphragms with thick panels tested in this study were calculated. The model may be used to interpolate between various diaphragm configurations and calculate shear resistance values for other configurations of diaphragms with thick sheathing. In the long run, it is hoped that the use of thicker sheathing will enable the use of structural systems that are cost effective for wider joist or beam spacing than systems made with dimension lumber and traditional sheathing thickness. The experimental data and the model developed in this project will be used to develop proposals for implementation of wood floor and roof diaphragms with thick panels in the Canadian and United States wood design standards.
Diaphragms - Strength
Building construction - Design
Documents
Less detail

23 records – page 2 of 3.