The aim of this study was to capture data on area-based water delivery systems, specifically in the context of logistics, systems differentiation, water delivery, and its localized effects. FPInnovations successfully collaborated with Fire & Flood to obtain this data. A two-day test was executed during which Fire & Flood set up their 4- and 12-inch systems and carried out sprinkler operations.
The Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) has asked FPInnovations to investigate current information and knowledge for bridge fire impact mitigation opportunities and strategies.
The extent of the investigation includes reaching out to domestic and international contacts to find directly applicable information and literature on strategies to mitigate fire impacts to bridge structures. This will include review of academic journals and reports, products and methods, to find
The National Fuels Management Reference Database was designed to collect data on wildland fuel treatment implementation and maintenance. This information is relevant to the Emergency Management Strategy in understanding where fuel treatments are located and how they were applied. FPInnovations reviewed the current status and use of the database and data depositories within wildfire management agencies. Combined with the findings of wildfire risk assessment experts’ data requirements, recommendations were provided for the integration of fuel treatment data into the Canadian Wildland Fire Information Framework.
Alberta Wildfire Management Aviation and Geomatics Section is interested in researching current infrared (IR) scanner technology and identifying potential next-generation IR scanners. A survey was identified as a tool for understanding the current use of IR scanners among Canadian wildfire agencies, with the intention of leveraging existing expertise. FPInnovations was tasked with conducting this survey.
Nine Canadian wildfire management agencies responded to the survey. The results identified the IR scanners currently in use, their applications, and the pros and cons associated with the respective scanners.
In October 2018, FPInnovations conducted burn trials to evaluate and compare the ignition potential and potential fire behaviour in two different configurations of piled harvest residuals. Continued collaborations in 2019 with Mosaic Forest Management and British Columbia Wildfire Service identified and developed a potential prescribed fire site that would allow ignition of harvest debris piled in an oriented configuration to evaluate fire behaviour during a period of higher fire hazard conditions.
FPInnovations’ Wildfire Operations Advisory group has asked its researchers to explore a method by which the performance of water-enhancing products can be repeatedly assessed in the laboratory. A new test method, known as the crib test, was designed to evaluate the effectiveness of water-enhancing products on burning woody fuel to simulate direct-attack aerial operations.
This report outlines the methodology for the crib test and describes the findings from performance evaluation tests conducted at the Protective Clothing and Equipment Research Facility (PCERF) at the University of Alberta.
This study focuses on evaluating the relative performance of different commercially available wildland fire chemicals using a custom-built sensible enthalpy rise calorimeter, known as the ‘Thermal Canister.’ Six different fire chemicals were evaluated in this study: Blazetamer 380, AquaGel-K, Firewall II, WD 881C, Thermo-Gel 200 L, and FireIce 561. The evaluation of the relative performance of the fire chemicals was conducted by using the average heat release rate as the primary metric.
It was found that under the test conditions, Thermo-Gel 200L at 3% concentration and FireIce 561 at 1.4% concentration were the most effective at suppressing combustion. The fire chemicals that were least effective at suppressing combustion were Firewall II at 0.25% and 2% concentration and WD 881C at 0.1%, 0.3%, and 1% concentrations. The study also found that certain fire chemicals such as AquaGel-K and FireIce 561 at their highest approved mix ratios were too viscous to be applied and may prove to be challenging to use for firefighting operations.
Data from this study will be used in the Wildfire Chemical Roadmap, where results from multiple tests will help assess the effectiveness and cost of using gels.
A methodology was developed to evaluate the performance of different commercially available siding materials when exposed to high and low radiant heat loads. The materials evaluated in this study were engineered wood, fibre cement board, cedar siding, and vinyl siding. The time to ignition of the wall prototypes was used to evaluate the performance of these materials.
Alberta Agriculture and Forestry (AAF) asked FPInnovations to conduct a field trial of two heavy helicopters that had recently been installed with on-board injection and mixing systems. The study focussed on determining the accuracy and reproducibility of these systems to produce effectively mixed water-enhancers for aerial delivery during wildfire suppression operations.
These field trials were conducted north of Slave Lake, Alta. in June 2020. This report discusses the background, methodology, and outcomes of this equipment validation test.
The USDA Forest Service’s Qualified Product List (QPL) provides guidance on the range of permissible mix ratios for water-enhancer products. Due to the proprietary nature of water-enhancer products, there are several unknowns about the rheology of the permissible mix ratios.
This study focused on mapping the viscosity of various suppressant products as a function of their mix ratios. The results revealed a wide range of viscosities across products, with each product showing a different non-linear relationship with different mix ratios.
The results from this study can help understand the optimum viscosity range to achieve desired drop characteristics during aerial operations.