Skip header and navigation

63 records – page 1 of 7.

Advanced methods of encapsulation

https://library.fpinnovations.ca/en/permalink/fpipub6091
Author
Osborne, Lindsay
Roy-Poirier, A.
Date
November 2016
Edition
44220
Material Type
Research report
Field
Sustainable Construction
, Fire Safety Group, National Research Council Canada Forestry Innovation Investment 1200 – 1130 W
Author
Osborne, Lindsay
Roy-Poirier, A.
Contributor
Forestry Innovation Investment
Date
November 2016
Edition
44220
Material Type
Research report
Physical Description
66 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Wood frame
Design
Fire
Series Number
W-3261
Language
English
Abstract
Neither the National Building Code of Canada (NBCC) [1], nor any provincial code, such as the British Columbia Building Code (BCBC) [2], currently provide “acceptable solutions” to permit the construction of tall wood buildings, that is buildings of 7 stories and above. British Columbia, however, was the first province in Canada to allow mid-rise (5/6 storey) wood construction and other provinces have since followed. As more mid-rise wood buildings are erected, their benefits are becoming apparent to the industry, and therefore they are gaining popularity and becoming more desirable. Forest product research has now begun to shift towards more substantial buildings, particularly in terms of height. High-rise buildings, typically taller than 6 storeys, are currently required to achieve 2 h fire resistance ratings (FRR) for floors and other structural elements, and need to be of non-combustible construction, as per the “acceptable solutions” of Division B of the NBCC [1]. In order for a tall wood building to be approved, it must follow an “alternative solution” approach, which requires demonstrating that the design provides an equivalent or greater level of safety as compared to an accepted solution using non-combustible construction. One method to achieve this level of safety is by ‘encapsulating’ the assembly to provide additional protection before wood elements become involved in the fire, as intended by the Code objectives and functional statements (i.e., prolong the time before the wood elements potentially start to char and their structural capacity is affected). It is also necessary to demonstrate that the assembly, in particular the interior finishes, conform to any necessary flame spread requirements. The Technical Guide for the Design and Construction of Tall Wood Buildings in Canada [3] recommends designing a tall wood building so that it is code-conforming in all respects, except that it employs mass timber construction. The guide presents various encapsulation methods, from full encapsulation of all wood elements to partial protection of select elements. National Research Council Canada (NRC), FPInnovations, and the Canadian Wood Council (CWC) began specifically investigating encapsulation techniques during their Mid-Rise Wood Buildings Consortium research project, and demonstrated that direct applied gypsum board, cement board and gypsum-concrete can delay the effects of fire on a wood substrate [4]. There is extensive data on the use of gypsum board as a means of encapsulation for wood-frame assemblies and cold-formed steel assemblies. However, tall wood buildings are more likely to employ mass timber elements due to higher load conditions, requirements for longer fire resistance ratings, as well as other factors. There is little knowledge currently available related to using gypsum board directly applied to mass timber, or in other configurations, for fire protection. Testing performed to date has been limited to direct applied Type X gypsum board using standard screw spacing, and showed promising results [5, 6, 7]. This represents an opportunity for other configurations that might provide enhanced protection of wood elements to be investigated. Being able to provide equivalent fire performance of assemblies between non-combustible and combustible construction will thus improve the competiveness of tall timber buildings by providing additional options for designers.
Revision of March 2015 edition
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: exit fire separations in mid-rise Wood buildings

https://library.fpinnovations.ca/en/permalink/fpipub49853
Author
Ranger, Lindsay
Dagenais, Christian
Date
March 2018
Material Type
Research report
Field
Sustainable Construction
Canadien des Forêts Advanced Wood-Based Solutions for Mid- Rise and High-Rise Construction: Exit Fire
Author
Ranger, Lindsay
Dagenais, Christian
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Material Type
Research report
Physical Description
91 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Fire
Building code
Residential construction
Language
English
Abstract
In 2015, the National Building Code of Canada (NBCC) [1] adopted prescriptive provisions to allow the construction of mid-rise (5- and 6-storey) buildings using combustible construction. These types of buildings were already permitted under the British Columbia Building Code, as of 2009 [2]. In2014 the Province of Ontario filed an amendment to also allow mid-rise wood buildings, however, it required that the exit fire separations be built using noncombustible construction having a fire resistance rating (FRR) of not less than 1.5-hr, which was an increase from the 1-hr requirement in the NBCC. The Québec Construction Code has also filed amendments to allow mid-rise wood construction and also limits exit stairwells to use noncombustible construction.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: Mid-rise wood exit shaft demonstration fire test report

https://library.fpinnovations.ca/en/permalink/fpipub49832
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Date
April 2018
Material Type
Research report
Field
Sustainable Construction
Exit Shaft Demonstration Fire Test Report April 2018 By: Lindsay Ranger, P.Eng, M.A.Sc, Scientist
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Contributor
Natural Resources Canada. Canadian Forest Service
Date
April 2018
Material Type
Research report
Physical Description
48 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Wood
Fire
Building code
Residential construction
Language
English
Abstract
FPInnovations conducted a research project to study the construction of mid-rise wood exit shafts in Ontario and Québec. The scope of the project included an investigation into the concerns that have been raised in regards to the use of wood exits in mid-rise buildings, an analysis of recent Canadian fire statistics in residential multi-family structures, and a fire demonstration of a mass timber wall and supported light-frame floor. This report describes the fire demonstration completed as part of this project; this report acts as a supplement to the full project report.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: modelling of timber connections under force and fire

https://library.fpinnovations.ca/en/permalink/fpipub49851
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Date
March 2018
Material Type
Research report
Field
Sustainable Construction
Connections under Force and Fire Date: March 2018 By: Zhiyong Chen, Ph.D., P.Eng., Scientist, Advanced
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Material Type
Research report
Physical Description
85 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber
Fire
Performance
Timber
Language
English
Abstract
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections, in particular under combination of various types of loads and fire, was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models for use in performance-based design for wood buildings, in particular, seismic and fire performance-based design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine and can be added to most general-purpose finite element software. The developed model was used to model the structural performance of a laminated veneer lumber (LVL) beam and a glulam bolted connection under force and/or fire. Compared with the test results, it shows that the developed model was capable of simulating the mechanical behaviour of LVL beam and glulam connection under load and/or fire with fairly good correlation. With this model, it will allow structural designers to obtain the load-displacement curve of timber connections under force, fire or combination of the two. With this, key design parameters such as capacity, stiffness, displacement and ductility, which are required for seismic or fire design, can be obtained. It is recommended that further verification and calibration of the model be conducted on various types of wood products, such as CLT, glulam, SCL and NLT, and fasteners, e.g. screw and rivet. Moreover, a database of the thermal and structural properties of the wood members and fasteners that are commonly used in timber constructions need to be developed to support and facilitate the application of the model.
Documents
Less detail

Advancing knowledge of mid-ply shear walls. Mid-ply shear wall fire resistance testing

https://library.fpinnovations.ca/en/permalink/fpipub8306
Author
Ranger, Lindsay
Dagenais, Christian
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
March 2021 PROJECT NO 301014322 ADVANCING KNOWLEDGE OF MID-PLY SHEAR WALLS MID-PLY SHEAR WALL FIRE
Author
Ranger, Lindsay
Dagenais, Christian
Date
March 2021
Material Type
Research report
Physical Description
41 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Design
Fire
Fire protection
Midply
Midply walls
Shear walls
Walls
Series Number
Technical Report TR 2021 No.78
Language
English
Abstract
The objective of this research is to address a knowledge gap related to fire performance of midply shear walls. Testing has already been done to establish the structural performance of these assemblies. To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. Fire tests will provide information for the development of design considerations for midply shear walls and confirm that they can achieve at least 1-hour fire-resistance ratings that are required for use in mid-rise buildings.
This research will support greater adoption of mid-rise residential and non-residential wood-frame construction and improve competition with similar buildings of noncombustible construction. This work will also support the development of the APA system report for midply walls, which will be a design guideline for using midply walls in North America.
Documents
Less detail

Assessing the flammability of mass timber components, a review

https://library.fpinnovations.ca/en/permalink/fpipub53026
Author
Mehaffey, J.R. (Jim)
Dagenais, Christian
Date
February 2014
Material Type
Research report
Field
Sustainable Construction
Mehaffey, Ph.D. CHM Fire Consultants Ltd. and Christian Dagenais, Eng., M.Sc. Scientist – Serviceability
Author
Mehaffey, J.R. (Jim)
Dagenais, Christian
Date
February 2014
Material Type
Research report
Physical Description
27 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building code
Fire
Performance
Design
Timber
Language
English
Abstract
The report concludes with the recommendation that it would be useful to run an extensive set of cone calorimeter tests on SCL, glue-laminated timber and CLT products. The fundamental data could be most useful for validating models for predicting flame spread ratings of massive timber products and useful as input to comprehensive computer fire models that predict the course of fire in buildings. It is also argued that the cone calorimeter would be a useful tool in assessing fire performance during product development and for quality control purposes.
Documents
Less detail

Bridges & wildfire event: identifying information gaps in bridge protection in the context of resistance to wildland fire events

https://library.fpinnovations.ca/en/permalink/fpipub8006
Author
Refai, Razim
Date
March 2020
Material Type
Research report
Field
Sustainable Construction
IN THE CONTEXT OF RESISTANCE TO WILDLAND FIRE EVENTS March 2020 info@fpinnovations.ca www.fpinnovations.ca
Author
Refai, Razim
Contributor
Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD)
Date
March 2020
Material Type
Research report
Physical Description
15 p.
Sector
Forest Operations
Field
Sustainable Construction
Research Area
Building Systems
Subject
Bridge
Fire
Protection
Structures
FPI TR
Wildfires
Series Number
Technical Report ; TR 2020 n.14
Language
English
Abstract
The Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) has asked FPInnovations to investigate current information and knowledge for bridge fire impact mitigation opportunities and strategies. The extent of the investigation includes reaching out to domestic and international contacts to find directly applicable information and literature on strategies to mitigate fire impacts to bridge structures. This will include review of academic journals and reports, products and methods, to find
Documents
Less detail

Bridges & wildfire event: identifying information gaps in bridge protection in the context of resistance to wildland fire events

https://library.fpinnovations.ca/en/permalink/fpipub19860
Author
Refai, Razim
Date
March 2020
Material Type
Research report
Field
Sustainable Construction
IN THE CONTEXT OF RESISTANCE TO WILDLAND FIRE EVENTS March 2020 info@fpinnovations.ca www.fpinnovations.ca
Author
Refai, Razim
Contributor
Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD)
Date
March 2020
Material Type
Research report
Physical Description
15 p.
Sector
Forest Operations
Field
Sustainable Construction
Research Area
Building Systems
Subject
Bridge
Fire
Protection
Structures
FPI TR
Wildfires
Series Number
Technical Report ; TR 2020 n.14
Language
English
Abstract
The Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) has asked FPInnovations to investigate current information and knowledge for bridge fire impact mitigation opportunities and strategies. The extent of the investigation includes reaching out to domestic and international contacts to find directly applicable information and literature on strategies to mitigate fire impacts to bridge structures. This will include review of academic journals and reports, products and methods, to find
Documents
Less detail

Calculating structural fire resistance of wood-frame assemblies

https://library.fpinnovations.ca/en/permalink/fpipub8672
Author
Dagenais, Christian
Chorlton, Bronwyn
Chen, Zhiyong
Date
March 2022
Material Type
InfoNote
Field
Sustainable Construction
STRUCTURAL FIRE RESISTANCE OF WOOD-FRAME ASSEMBLIES Christian Dagenais, P.Eng., Ph.D., Bronwyn Chorlton, Ph.D
Author
Dagenais, Christian
Chorlton, Bronwyn
Chen, Zhiyong
Date
March 2022
Material Type
InfoNote
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Fire protection
Structural design
Standards
Wood construction
Language
English
Abstract
This InfoNote summarizes the verification and validation that the current design requirements of Annex B of CSA O86 can also be applied to small framing members used in unprotected and protected lightweight wood-frame assemblies, e.g., walls and floors. With minor editorial changes, the scope of application of Annex B of CSA O86 could include all wood and wood-based products listed in CSA O86, regardless of their original and residual dimensions.
Documents

InfoNote2022N7E.pdf

Read Online Download
Less detail

Characterization of fires in residential buildings

https://library.fpinnovations.ca/en/permalink/fpipub2450
Author
Mehaffey, J.R. (Jim)
Date
March 2007
Edition
39029
Material Type
Research report
Field
Sustainable Construction
Buildings Project Leader: Jim Mehaffey, Building Systems Department, Fire Research Group, Ottawa Laboratory
Author
Mehaffey, J.R. (Jim)
Date
March 2007
Edition
39029
Material Type
Research report
Physical Description
3 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Building construction
Residential construction
Series Number
General Revenue
4918
Location
Québec, Québec
Language
English
Abstract
Fires, Building - Tests
Documents
Less detail

63 records – page 1 of 7.