Skip header and navigation

8 records – page 1 of 1.

Advanced wood-based solutions for mid-rise and high-rise construction: modelling of timber connections under force and fire

https://library.fpinnovations.ca/en/permalink/fpipub49851
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Date
March 2018
Material Type
Research report
Field
Sustainable Construction
Connections under Force and Fire Date: March 2018 By: Zhiyong Chen, Ph.D., P.Eng., Scientist, Advanced
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Material Type
Research report
Physical Description
85 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber
Fire
Performance
Timber
Language
English
Abstract
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections, in particular under combination of various types of loads and fire, was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models for use in performance-based design for wood buildings, in particular, seismic and fire performance-based design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine and can be added to most general-purpose finite element software. The developed model was used to model the structural performance of a laminated veneer lumber (LVL) beam and a glulam bolted connection under force and/or fire. Compared with the test results, it shows that the developed model was capable of simulating the mechanical behaviour of LVL beam and glulam connection under load and/or fire with fairly good correlation. With this model, it will allow structural designers to obtain the load-displacement curve of timber connections under force, fire or combination of the two. With this, key design parameters such as capacity, stiffness, displacement and ductility, which are required for seismic or fire design, can be obtained. It is recommended that further verification and calibration of the model be conducted on various types of wood products, such as CLT, glulam, SCL and NLT, and fasteners, e.g. screw and rivet. Moreover, a database of the thermal and structural properties of the wood members and fasteners that are commonly used in timber constructions need to be developed to support and facilitate the application of the model.
Documents
Less detail

Analysis of full-scale fire-resistance tests of structural composite lumber beams

https://library.fpinnovations.ca/en/permalink/fpipub3316
Author
Dagenais, Christian
Date
October 2014
Edition
39980
Material Type
Research report
Field
Wood Manufacturing & Digitalization
FPInnovations Analysis of Full-Scale Fire-resistance Tests of Structural Composite Lumber Beams
Author
Dagenais, Christian
Contributor
Canadian Forest Service
Date
October 2014
Edition
39980
Material Type
Research report
Physical Description
14 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Fire
Resistance
Testing
Structural composites
Beams
Series Number
E 4914
Location
Québec, Québec
Language
English
Abstract
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL). A sub-objective is to evaluate the encapsulation performance of Type X gypsum board directly applied to SCL beams and its contribution to fire-resistance of wood elements. The test data is being used to further support the applicability of the newly developed Canadian calculation method for mass timber elements, recently implemented as Annex B of CSA O86-14.
Structural Composites - Properties
Beams - Fire resistance
Documents
Less detail

Glulam and CLT innovative manufacturing process and products development : effects of manufacturing parameters on the fire-resistance of CLT assemblies

https://library.fpinnovations.ca/en/permalink/fpipub39850
Author
Grandmont, Jean-Francois
Dagenais, Christian
Osborne, Lindsay
Date
June 2014
Material Type
Research report
Field
Wood Manufacturing & Digitalization
and Products Development: Effects of Manufacturing Parameters on the Fire-resistance of CLT Assemblies
Author
Grandmont, Jean-Francois
Dagenais, Christian
Osborne, Lindsay
Contributor
Canadian Forest Service
Date
June 2014
Material Type
Research report
Physical Description
35 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Laminate product
Fire
Resistance
Series Number
301007960
E-4888
Location
Québec, Québec
Language
English
Abstract
This study was part of a broader project entitled Glulam and CLT Innovative Manufacturing Process and Product Development. The main objective of the current study is to evaluate the effect of CLT panels manufacturing parameters on its fire resistance. More specifically: § To evaluate the effect of CLT manufacturing (gluing) parameters on the heat delamination resistance under standard fire conditions; § To improve the fire-resistance of the CLT panels.
Glulam
Laminated products - Fire resistance
Documents
Less detail

New concepts in wood I-joist manufacturing and utilization : fire resistant wood I-joist

https://library.fpinnovations.ca/en/permalink/fpipub39821
Author
Osborne, Lindsay
Date
May 2014
Material Type
Research report
Field
Wood Manufacturing & Digitalization
PDF
Ajoutez cet article à votre liste de sélections pour demander le PDF - Add this item to your selection list to request the PDF
New Concepts in Wood I-joist Manufacturing and Utilization - Fire Resistant Wood I-joist
Author
Osborne, Lindsay
Contributor
Canadian Forest Service
Date
May 2014
Material Type
Research report
Physical Description
25 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Joists
Fire
Resistance
Series Number
Transformative Technologies
Project no.301007961
E-4876
Location
Québec, Québec
Language
English
Abstract
The objective of the study is to identify current and available solutions for improving the fire resistance of wood I-joists. After an analysis and comparison of these technologies, the most promising solutions will be presented which will be suggested to wood I-joist manufacturers for potential further investigation.
Wood I-joists
Fire Resistant - Joints
PDF
Ajoutez cet article à votre liste de sélections pour demander le PDF - Add this item to your selection list to request the PDF
Documents
Less detail

Performance-based approach to support tall and large wood buildings: fire and seismic performance

https://library.fpinnovations.ca/en/permalink/fpipub49569
Author
Dagenais, Christian
Chen, Zhiyong
Popovski, Marjan
Date
October 2017
Material Type
Research report
Field
Sustainable Construction
FPInnovations Performance-Based Approach to Support Tall and Large Wood Buildings: Fire
Author
Dagenais, Christian
Chen, Zhiyong
Popovski, Marjan
Contributor
Natural Resources Canada. Canadian Forest Service
Date
October 2017
Material Type
Research report
Physical Description
48 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber
Fire
Performance
Adhesives
Language
English
Abstract
The objective of the current project is to develop a performance-based design process for wood-based design systems that would meet the objectives and functional statements set forth in the National Building Code of Canada. More specifically, this report discusses the fire and seismic performance of buildings, as identified as a priority in a previous FPInnovations report.
Documents
Less detail

Surface burning characteristics of V2 stress grade cross-laminated timber

https://library.fpinnovations.ca/en/permalink/fpipub39753
Author
Dagenais, Christian
Date
October 2013
Material Type
Research report
Field
Sustainable Construction
Dagenais, Eng., M.Sc. Scientist, Serviceability and Fire Group Advanced Building Systems
Author
Dagenais, Christian
Contributor
Canadian Forest Service
Date
October 2013
Material Type
Research report
Physical Description
10 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Timber
Surface properties
Resistance
Fire
Laminate product
Series Number
E4827
Location
Québec, Québec
Language
English
Abstract
Advanced wood building systems form a significant market opportunity for use of wood in taller and larger buildings, which are currently required to be of non-combustible construction in accordance with provisions set forth in Part 3 of Division B of the National Building Code of Canada (NBCC).
Documents
Less detail

WoodST: an advanced modelling tool for fire safety analysis of timber structures

https://library.fpinnovations.ca/en/permalink/fpipub7943
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
January 2021
Material Type
Research report
Field
Sustainable Construction
INFONOTE January 2021 – no. 01 Not-Restricted WOODST: AN ADVANCED MODELLING TOOL FOR FIRE
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
January 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Models
Performance
Timber
Language
English
Abstract
WoodST is capable of calculating heat transfer, charring rate, load-displacement curve as well as the time and mode of failure of timber structures exposed to fire, thus providing a cost-competitive solution for the fire safety analysis of timber structures. This InfoNote briefly introduces the development and verification of WoodST. Two applications of WoodST are also demonstrated.
Documents

InfoNote2021N1E.pdf

Read Online Download
Less detail

WoodST: outil de modélisation avancé pour l'analyse de la sécurité incendie des structures en bois

https://library.fpinnovations.ca/en/permalink/fpipub7944
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
Janvier 2021
Material Type
Research report
Field
Sustainable Construction
of Timber Connections under Force and Fire (Project No. 301012203). FPInnovations, Vancouver, Canada
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Date
Janvier 2021
Material Type
Research report
Physical Description
5 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Models
Performance
Timber
Language
French
Abstract
WoodST est capable de calculer le transfert de chaleur, la vitesse de carbonisation, la courbe charge-déplacement ainsi que le moment et le mode de défaillance des structures en bois exposées au feu, offrant ainsi une solution à coût compétitif pour l'analyse de la sécurité incendie des ossatures en bois. La présente note d’information présente brièvement le développement et la vérification de WoodST. Deux applications de WoodST sont également présentées.
Documents

InfoNote2021N1F.pdf

Read Online Download
Less detail

8 records – page 1 of 1.