Skip header and navigation

19 records – page 1 of 2.

Bridges & wildfire event: identifying information gaps in bridge protection in the context of resistance to wildland fire events

https://library.fpinnovations.ca/en/permalink/fpipub19860
Author
Refai, Razim
Date
March 2020
Material Type
Research report
Field
Sustainable Construction
TO WILDLAND FIRE EVENTS March 2020 info@fpinnovations.ca www.fpinnovations.ca This report
Author
Refai, Razim
Contributor
Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD)
Date
March 2020
Material Type
Research report
Physical Description
15 p.
Sector
Forest Operations
Field
Sustainable Construction
Research Area
Building Systems
Subject
Bridge
Fire
Protection
Structures
FPI TR
Wildfires
Series Number
Technical Report ; TR 2020 n.14
Language
English
Abstract
The Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) has asked FPInnovations to investigate current information and knowledge for bridge fire impact mitigation opportunities and strategies. The extent of the investigation includes reaching out to domestic and international contacts to find directly applicable information and literature on strategies to mitigate fire impacts to bridge structures. This will include review of academic journals and reports, products and methods, to find
Documents
Less detail

Bridges & wildfire event: identifying information gaps in bridge protection in the context of resistance to wildland fire events

https://library.fpinnovations.ca/en/permalink/fpipub8006
Author
Refai, Razim
Date
March 2020
Material Type
Research report
Field
Sustainable Construction
TO WILDLAND FIRE EVENTS March 2020 info@fpinnovations.ca www.fpinnovations.ca This report
Author
Refai, Razim
Contributor
Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD)
Date
March 2020
Material Type
Research report
Physical Description
15 p.
Sector
Forest Operations
Field
Sustainable Construction
Research Area
Building Systems
Subject
Bridge
Fire
Protection
Structures
FPI TR
Wildfires
Series Number
Technical Report ; TR 2020 n.14
Language
English
Abstract
The Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD) has asked FPInnovations to investigate current information and knowledge for bridge fire impact mitigation opportunities and strategies. The extent of the investigation includes reaching out to domestic and international contacts to find directly applicable information and literature on strategies to mitigate fire impacts to bridge structures. This will include review of academic journals and reports, products and methods, to find
Documents
Less detail

Development of a Canadian fire-resistance design method for massive wood members

https://library.fpinnovations.ca/en/permalink/fpipub39731
Author
Dagenais, Christian
Osborne, Lindsay
Date
January 2013
Material Type
Research report
Field
Sustainable Construction
Development of a Canadian Fire-Resistance Design Method for Massive Wood Members
Author
Dagenais, Christian
Osborne, Lindsay
Contributor
Canadian Forest Service.
Date
January 2013
Material Type
Research report
Physical Description
37 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Fire
Building construction
Design
Series Number
301006148
E-4821
Location
Québec, Québec
Language
English
Abstract
Building regulations require that key building assemblies exhibit sufficient fire-resistance to allow time for occupants to escape and to minimize property losses. The intent is to compartmentalize the structure to prevent the spread of fire and smoke, and to ensure structural adequacy to prevent or delay collapse. The fire-resistance rating of a building assembly has traditionally been assessed by subjecting a replicate of the assembly to the standard fire-resistance test, (ULC S101 in Canada, ASTM E119 in the USA and ISO 834 in most other countries). Massive wood elements such as solid sawn timbers, glued laminated timber (glulam) and structural composite lumber (SCL) can provide excellent fire-resistance. This is due to the inherent nature of thick timber members to char slowly when exposed to fire allowing massive wood systems to maintain significant structural resistance for extended durations when exposed to fire. Calculating the fire-resistance of massive wood elements can be relatively simple because of the essentially constant and predictable rate of charring during the standard fire exposure. Charred wood is assumed to no longer provide any strength and stiffness; therefore the remaining (or reduced) cross-section must be capable of carrying the load. This report presents two (2) mechanics-based design procedures as alternative design methods to conducting fire-resistance tests in compliance with ULC S101 or to using Appendix D-2.11 of the NBCC, which is limited to glulam members stressed in bending or axial compression. The procedures are applicable to solid sawn timber, glulam or SCL structural members and aim at developing a suitable calculation method that would provide accurate fire-resistance predictions when compared to test data. The long-term objective is to provide recommendations for incorporating either method into CSA O86 and/or NBCC. The comparisons between the proposed methodologies and the experimental data for beams, columns and tension members show good agreement. While further refinement of these methods is possible, these comparisons suggest that the use of the CSA O86 equations and a load combination for rare events adequately address fire-resistance design of massive wood members.
Solid Wood Products
Glulam
Structural building components
Cross-laminated timber
Buildings - Design
FIRE RESISTANCE
Documents
Less detail

Development of CLT products with improved fire performance

https://library.fpinnovations.ca/en/permalink/fpipub7708
Author
He, Guangbo
Feng, Martin
Roussière, Fabrice
Date
March 2020
Edition
52984
Material Type
Research report
Field
Sustainable Construction
Author
He, Guangbo
Feng, Martin
Roussière, Fabrice
Date
March 2020
Edition
52984
Material Type
Research report
Physical Description
17 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Fire
Structural composites
Laminate product
Timber
Hardwoods
Testing
Language
English
Abstract
The fire resistance of cross-laminated timber (CLT) could be improved by treating the lamina with fire retardants. The major issues with this technology are the reduced bondability of the treated lamina with commercial adhesives. This study assessed several surface preparation methods that could improve the bondability and bond durability of fire-retardant treated wood  with  two  commercial  adhesives.  Four  surface  preparation  methods,  including  moisture/heat/pressure, surface planing, surface chemical treatment, and surface plasma treatment were assessed for their impact on the bondability and bond durability of lodgepole pine lamina. The block shear test results indicated that all surface preparation methods were somewhat  effective  in  improving  bond  performance  of  fire-retardant  treated  wood  compared to the untreated control wood samples, depending on the types of fire retardants and wood adhesives applied in the treatment process and bonding process. The selection of surface preparation, fire retardant, and wood adhesive should be considered interactively to obtain the best bond properties and fire performance. It may be possible to effectively bond the treated lamina with PUR adhesive without any additional surface preparation for the fire retardant used in the treatment at FPInnovations.
Documents
Less detail

Effectiveness of retardant on mulch fuels: a case study at Pelican Mountain, 2018

https://library.fpinnovations.ca/en/permalink/fpipub19843
Author
Hsieh, Rex
Date
March 2020
Material Type
Research report
Field
Fibre Supply
Author
Hsieh, Rex
Contributor
Canadian Forest Services (CFS)
Natural Resources Canada (NRC)
Alberta Agriculture and Forestry (AAF)
Date
March 2020
Material Type
Research report
Physical Description
27 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Wildfire Operations
Subject
Fire retardant
Fuel treatment
Mulching
Mulch
FPI TR
Retardant
Series Number
Technical Report ; TR 2020 n.7
Language
English
Abstract
Mulching is a common method of fuel treatment. However, it is not currently listed by the U.S. Forest Service as a fuel type in its recommendations for fire retardant coverage levels. FPInnovations researchers set up plots with different coverage levels of retardant on a mulch fuel bed and collected fire behaviour data when a fire interacted with these plots. The results are intended to help wildfire agencies understand the effectiveness of retardant on mulch fuels in developing better suppression plans.
Documents
Less detail

Encapsulation of mass timber floor surfaces, report to Forestry Innovation Investment Ltd.

https://library.fpinnovations.ca/en/permalink/fpipub53043
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Date
March 2020
Material Type
Research report
Field
Sustainable Construction
for their valuable input. Thank you to the National Research Council Fire Laboratory for their hard work
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2020
Material Type
Research report
Physical Description
55 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood
Fire
Design
Building code
Floors
Fire tests
Residential construction
Language
English
Abstract
Currently, mass timber building designs commonly incorporate a concrete floor topping. This can improve building accoustics by increasing the mass of the assembly, reduce floor vibration and create a smooth flat surface to install finish flooring on. The installation of concrete requires formwork, pouring and finishing the concrete and time to cure which adds to project schedules. One way to address this is to use mass timber elements that are prefabricated with concrete toppings preinstalled. Replaceing the concrete floor toppings wiht dry alternatives, such as cement board, may also reduce construction timelines, while still ensuring adequate acoustic and vibration performance. Cement board needs only to be screwed in place and can be walked on immediately after installation; this reduction in construction time may reduce overall project costs and help make wood buildings more cost competitive than other types of construction.
Documents
Less detail

Evaluating a selective harvest operation as a forest fuel treatment as a forest fuel treatment. A case study in a mature douglas-fir forest in central interior British Columbia

https://library.fpinnovations.ca/en/permalink/fpipub53038
Author
Hvenegaard, Steven
MacKinnon, Brandon
Date
September 2020
Material Type
Research report
Field
Fibre Supply
. .............................................................................................. 5 List of tables Table 1. Potential for crown fire initiation at 90th percentile conditions
Author
Hvenegaard, Steven
MacKinnon, Brandon
Contributor
City of Quesnel
Date
September 2020
Material Type
Research report
Physical Description
18 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Wildfires
Forestry
Fuel
Black spruce
Alberta
Density
Physical properties
Mulch
Forest fire
Crown fire
Wind
FPI TR
FOP Technical Report
Series Number
Technical Report ; TR 2020 n.34
Location
Quesnel, British Columbia
Language
English
Abstract
The City of Quesnel, B.C. has applied an innovative selective harvesting technique in a mature Douglas-fir forest stand with the objectives of maintaining biodiversity and reducing fuel-load buildup and consequent wildfire threat. FPInnovations researchers monitored and documented the harvesting operations and measured machine productivity to evaluate the cost-effectiveness of the operation. To support the assessment of fuel-load reduction, FPInnovations’ Wildfire Operations group conducted pre- and post-harvest fuel-sampling activities to evaluate changes in forest fuel components.
Documents
Less detail

Evaluating the effectiveness of FireSmart priority zones for structure protection

https://library.fpinnovations.ca/en/permalink/fpipub39760
Author
Walkinshaw, Stew
Schroeder, Dave
Date
November 2013
Material Type
Research report
Field
Fibre Supply
to the Fort Providence fire crews for their work in preparing the treated plots and their assistance
Author
Walkinshaw, Stew
Schroeder, Dave
Date
November 2013
Material Type
Research report
Physical Description
20 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Fire
Fire Control
Vegetation
Wildfires
Advantage
Series Number
Advantage ; Vol. 14, No. 6
Language
English
ISSN
14933381
Abstract
When wildfire escapes into the wildlands-urban interface, homes, industrial facilities, and other urban values can be threatened or destroyed. As recommended by the FireSmart Canada program, vegetation management is a key principle in mitigating the risk of wildfire affecting urban values. In 2007, at a forested test site in the Northwest Territories, Canada, FPInnovations evaluated the effectiveness of using vegetation management- i.e., removal and reduction of forest fuels from the vicinity of a small building- as a strategy for protecting the building from wildfire.
Documents
Less detail

Fire-resistance test report of E1 stress grade cross-laminated timber assemblies

https://library.fpinnovations.ca/en/permalink/fpipub42918
Author
Osborne, Lindsay
Dagenais, Christian
Date
August 2013
Material Type
Research report
Field
Sustainable Construction
Department Manager Project No. 301006155 Report 2012/13 Fire
Author
Osborne, Lindsay
Dagenais, Christian
Contributor
Service canadien des forêts.
Date
August 2013
Material Type
Research report
Physical Description
18 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Fire
Building construction
Composites
Series Number
E-4824
Location
Québec, Québec
Language
English
Abstract
A series of 3 cross-laminated timber (CLT) fire-resistance tests were conducted in accordance with ULC S101 standard as required in the National Building Code of Canada. The first two tests were 3-ply wall assemblies which were 105 mm thick, one unprotected and the other protected with an intumescent coating, FLAMEBLOC® GS 200, on the exposed surface. The walls were loaded to 295 kN/m (20 250 lb./ft.). The unprotected assembly failed structurally after 32 minutes, and the protected assembly failed after 25 minutes. The third test consisted of a 175 mm thick 5-ply CLT floor assembly which used wood I-joists, resilient channels, insulation and 15.9 mm ( in.) Type X gypsum board protection. A uniform load of 5.07 kPa (106 lb./ft²) was applied. The floor assembly failed after 138 min due to integrity.
CROSS LAYING
FIRE RESISTANCE
Documents
Less detail

Flame spread in concealed mass timber spaces, report to Forestry Innovation Investment Ltd.

https://library.fpinnovations.ca/en/permalink/fpipub53042
Author
Ranger, Lindsay
Dagenais, Christian
Date
March 2020
Material Type
Research report
Field
Sustainable Construction
and limiting the contribution of wood elements to fire growth and severity within a compartment
Author
Ranger, Lindsay
Dagenais, Christian
Date
March 2020
Material Type
Research report
Physical Description
40 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Fire
Doors
Timber
Resistance
Laminate product
Language
English
Abstract
These concealed or void space cases require installation of elements which represent additional material cost and labour. For wood buildings that rely heavily on prefabrication, these steps can have a significant impact on scheduling. Removing dependence on concrete and gypsum board in certain applications could make wood buildings more cost competitive to similar buildings of steel and concrete and could further enhance the benefits of prefabricated construction.
Documents
Less detail

19 records – page 1 of 2.