Skip header and navigation

7 records – page 1 of 1.

Design example : designing for openings in wood diaphragm

https://library.fpinnovations.ca/en/permalink/fpipub6030
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Date
October 2013
Edition
42999
Material Type
Research report
Field
Sustainable Construction
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Contributor
Canadian Wood Council
Date
October 2013
Edition
42999
Material Type
Research report
Physical Description
36 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Series Number
W-3080
Language
English
Documents
Less detail

Design example : wood diaphragm on reinforced CMU shearwalls

https://library.fpinnovations.ca/en/permalink/fpipub6029
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Date
October 2013
Edition
42998
Material Type
Research report
Field
Sustainable Construction
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Contributor
Canadian Wood Council
Date
October 2013
Edition
42998
Material Type
Research report
Physical Description
20 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Walls
Series Number
W-3079
Language
English
Abstract
N/A
Documents
Less detail

Design example : wood diaphragm using envelope method

https://library.fpinnovations.ca/en/permalink/fpipub6031
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Date
October 2013
Edition
43000
Material Type
Research report
Field
Sustainable Construction
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Contributor
Canadian Wood Council
Date
October 2013
Edition
43000
Material Type
Research report
Physical Description
14 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Series Number
W-3081
Language
English
Abstract
N/A
Documents
Less detail

Diaphragm flexibility

https://library.fpinnovations.ca/en/permalink/fpipub6028
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Date
October 2013
Edition
42997
Material Type
Research report
Field
Sustainable Construction
Author
Neylon, B.
Wang, Jasmine
Ni, Chun
Contributor
Canadian Wood Council
Date
October 2013
Edition
42997
Material Type
Research report
Physical Description
7 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Walls
Series Number
W-3078
Language
English
Abstract
Diaphragms are essential to transfer lateral forces in the plane of the diaphragms to supporting shear walls underneath. As the distribution of lateral force to shear walls is dependent on the relative stiffness/flexibility of diaphragm to the shear walls, it is critical to know the stiffness of both diaphragm and shear walls, so that appropriate lateral force applied on shear walls can be assigned. In design, diaphragms can be treated as flexible, rigid or semi-rigid. For a diaphragm that is designated as flexible, the in-plane forces can be assumed to be distributed to the shear walls according to the tributary areas associated with each shear wall. For a diaphragm that is designated as rigid, the loads are assumed to be distributed according to the relative stiffness of the shear walls, with consideration of additional shear force due to torsion for seismic design. In reality, diaphragm is neither purely flexible nor completely rigid, and is more realistically to be treated as semi-rigid. In this case, computer analysis using either plate or diagonal strut elements can be used and the load-deflection properties of the diaphragm will result in force distribution somewhere between the flexible and rigid models. However, alternatively envelope approach which takes the highest forces from rigid and flexible assumptions can be used as a conservative estimation in lieu of computer analysis.
Documents
Less detail

Vertical movement in wood platform frame structures : basics

https://library.fpinnovations.ca/en/permalink/fpipub6026
Author
Doudak, Ghasan
Lepper, P.
Ni, Chun
Wang, Jasmine
Date
October 2013
Edition
42995
Material Type
Research report
Field
Sustainable Construction
D P L A T F O R M F R A M E S T R U C T U R E S: B a si c s Wood moisture content
Author
Doudak, Ghasan
Lepper, P.
Ni, Chun
Wang, Jasmine
Contributor
Canadian Wood Council
Date
October 2013
Edition
42995
Material Type
Research report
Physical Description
10 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Series Number
W-3076
Language
English
Abstract
Movement in structures due to environmental condition changes and loads must be considered in design. Temperature changes will cause movement in concrete, steel and masonry structures. For wood materials, movement is primarily related to shrinkage or swelling caused by moisture loss or gain when the moisture content is below 28% (wood fiber saturation point). Other movement in wood structures may also include: settlement (bedding-in movement) due to closing of gaps between members and deformation due to compression loads, including instantaneous elastic deformation and creep. Differential movement can occur where wood frame is connected to rigid components such as masonry cladding, concrete elevator shafts, mechanical services and plumbing, and where mixed wood products such as lumber, timbers, and engineered wood products are used. Evidence from long-term wood frame construction practices shows that for typical light frame construction up to three storeys high, differential movement can be relatively easily accommodated such as through specifying “S-Dry” lumber. However, differential movement over the height of wood-frame buildings becomes a very important consideration for taller buildings due to its cumulative effect. The APEGBC Technical and Practice Bulletin provides general design guidance and recommends the use of engineered wood products and dimension lumber with 12% moisture content for floor joists to reduce and accommodate differential movement in 5 and 6-storey wood frame buildings. Examples of differential movement concerns and solutions in wood-frame buildings can also be found in the Best Practice Guide published by the Canadian Mortgage and Housing Corporation and the Building Enclosure Design Guide –Wood Frame Multi-Unit Residential Buildings published by the Homeowner Protection Office of BC Housing. This document illustrates the causes and other basic information related to vertical movement in wood platform frame buildings and recommendations on material handling and construction sequencing to protect wood from rain and reduce the vertical movement.
Documents
Less detail

Vertical movement in wood platform frame structures : design and detailing solutions

https://library.fpinnovations.ca/en/permalink/fpipub6025
Author
Doudak, Ghasan
Lepper, P.
Ni, Chun
Wang, Jasmine
Date
October 2013
Edition
42994
Material Type
Research report
Field
Sustainable Construction
Author
Doudak, Ghasan
Lepper, P.
Ni, Chun
Wang, Jasmine
Contributor
Canadian Wood Council
Date
October 2013
Edition
42994
Material Type
Research report
Physical Description
13 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Series Number
W-3075
Language
English
Abstract
Most buildings are designed to accommodate a certain range of movement. In design, it is important for designers to identify locations where potential differential movement could affect structural integrity and serviceability, predict the amount of differential movement and develop proper detailing to accommodate it. To allow non-structural materials to be appropriately constructed, an estimate of anticipated differential movement should be provided in the design drawings. Simply specifying wood materials with lower MC at time of delivery does not guarantee that the wood will not get wet on construction sites and will deliver lower shrinkage amounts as anticipated. It is therefore important to ensure that wood does not experience unexpected wetting during storage, transportation and construction. Good construction sequencing also plays an important role in reducing wetting, the consequent wood shrinkage and other moisture-related issues. Existing documents such as the APEGBC Technical and Practice Bulletin on 5- and 6-Storey Wood Frame Residential Building Projects, the Best Practice Guide published by the Canadian Mortgage and Housing Corporation (CMHC), the Building Enclosure Design Guide –Wood Frame Multi-Unit Residential Buildings published by the BC Housing- Homeowner Protection Office (HPO) provide general design guidance on how to reduce and accommodate differential movement in platform frame construction.
Documents
Less detail

Vertical movement in wood platform frame structures : movement prediction

https://library.fpinnovations.ca/en/permalink/fpipub6027
Author
Doudak, Ghasan
Lepper, P.
Ni, Chun
Wang, Jasmine
Date
October 2013
Edition
42996
Material Type
Research report
Field
Sustainable Construction
Author
Doudak, Ghasan
Lepper, P.
Ni, Chun
Wang, Jasmine
Contributor
Canadian Wood Council
Date
October 2013
Edition
42996
Material Type
Research report
Physical Description
9 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building construction
Residential construction
Design
Moisture content
Series Number
W-3077
Language
English
Abstract
It is not possible or practical to precisely predict the vertical movement of wood structures due to the many factors involved in construction. It is, however, possible to obtain a good estimate of the vertical movement to avoid structural, serviceability, and building envelope problems over the life of the structure. Typically “S-Dry” and “S-Grn” lumber will continue to lose moisture during storage, transportation and construction as the wood is kept away from liquid water sources and adapts to different atmospheric conditions. For the purpose of shrinkage prediction, it is usually customary to assume an initial moisture content (MC) of 28% for “S-Green” lumber and 19% for “S-Dry” lumber. “KD” lumber is assumed to have an initial MC of 15% in this series of fact sheets. Different from solid sawn wood products, Engineered Wood Products (EWP) are usually manufactured with MC levels close to or even lower than the equilibrium moisture content (EMC) in service. Plywood, Oriented Strand Board (OSB), Laminated Veneer Lumber (LVL), Laminated Strand Lumber (LSL), and Parallel Strand Lumber (PSL) are usually manufactured at MC levels ranging from 6% to 12%. Engineered wood I-joists are made using kiln dried lumber (usually with moisture content below 15%) or structural composite lumber (such as LVL) flanges and plywood or OSB webs, therefore they are usually drier and have lower shrinkage than typical “S-Dry” lumber floor joists. Glued-laminated timbers (Glulam) are manufactured at MC levels from 11% to 15%, so are the recently-developed Cross-laminated Timbers (CLT). For all these products, low shrinkage can be achieved and sometimes small amounts of swelling can be expected in service if their MC at manufacturing is lower than the service EMC. In order to fully benefit from using these dried products including “S-Dry” lumber and EWP products, care must be taken to prevent them from wetting such as by rain during shipment, storage and construction. EWPs may also have lower shrinkage coefficients than solid wood due to the adhesives used during manufacturing and the more mixed grain orientations in the products, including the use of cross-lamination of veneers (plywood) or lumber (CLT). The APEGBC Technical and Practice Bulletin emphasizes the use of EWP and dimension lumber with 12% moisture content for the critical horizontal members to reduce differential movement in 5 and 6-storey wood frame buildings.
Documents
Less detail

7 records – page 1 of 1.