Skip header and navigation

5 records – page 1 of 1.

Construction moisture management, nail-laminated timber

https://library.fpinnovations.ca/en/permalink/fpipub8035
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Field
Sustainable Construction
. While “S-Dry” dimension lumber has moisture content (MC) of around 19% or lower when it is produced
Author
Wang, Jieying
Date
March 2021
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Laminate product
Performance
Wood frame
Moisture content
Series Number
InfoNote 2021 N 15
Language
English
Abstract
Nail-laminated timber (NLT) is a large built-up member often used as interior structural members for floors, roofs, walls, and elevator/stair shafts. Because prolonged wetting of wood may cause staining, mould, excessive dimensional change (sometimes enough to fail fasteners), and even result in decay and loss of strength, construction moisture is an important consideration when building with NLT. This document aims to provide technical information to help architects, engineers, and builders assess the potential for wetting of NLT during building construction and identify appropriate actions to mitigate the risks.
Documents

InfoNote2021N15E.pdf

Read Online Download
Less detail

Field measurement of vertical movement and roof moisture performance of the Wood Innovation and Design Centre : instrumentation and first year's performance

https://library.fpinnovations.ca/en/permalink/fpipub44205
Author
Wang, Jieying
Date
March 2015
Material Type
Research report
Field
Sustainable Construction
PDF
Ajoutez cet article à votre liste de sélections pour demander le PDF - Add this item to your selection list to request the PDF
Author
Wang, Jieying
Contributor
Forestry Innovation Investment
Date
March 2015
Material Type
Research report
Physical Description
39 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
British Columbia
Building construction
Laminate product
Moisture content
Performance
Test methods
Series Number
301008940
Language
English
Abstract
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying slowly after they are wetted during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. Field measurements also provide performance data to support regulatory and market acceptance of wood-based systems in tall and large buildings. This report first describes instrumentation to measure the vertical movement of selected glulam columns and cross-laminated timber (CLT) walls in this building. Three locations of glulam columns and one CLT wall of the core structure were selected for measuring vertical movement along with the environmental conditions (temperature and humidity) in the immediate vicinity. The report then describes instrumentation to measure the moisture changes in the wood roof structure. Six locations in the roof were selected and instrumented for measuring moisture changes in the wood as well as the local environmental conditions. All sensors and instrumentations, with the exception of one, were installed and became operational in the middle of March 2014, after the roof sheathing was installed. The other instrumentation was installed in July 2014. This report presents performance of the building during its first year as measured from topping out of the structure. In the end, the one-year period covers six months of construction and six months of occupancy. This is the first year of a planned five-year monitoring. The first year’s monitoring showed that the wood inside the building had reached moisture content (MC) of about 4-6% in the heating season, from an initial MC of 13% during construction. Glulam columns were extremely dimensionally stable given the changes in MC and loading conditions. With a height of over 5 m and 6 m, respectively, the two glulam columns measured in this study showed very small amounts of vertical movement, each below 2 mm. The cumulative shortening of the six glulam columns along the height of the building would be about 8 mm, not taking into account deformation at connection details or effects of reduced loads on upper floors. The CLT wall was found to be also dimensionally stable along the height of the building. The measurements showed that the entire CLT wall, from Floor 1 to Floor 6, would shorten about 14 mm. The CLT floors, however, had considerable shrinkage in the thickness direction, and therefore should be taken into consideration in the design and construction of components, such as curtain walls, which are connected to the floors. In terms of the roof performance, two locations, both with a wet concrete layer poured above the plywood sheathing, showed wetness during construction but dried slowly afterwards. The good drying performance must be attributed to the interior ventilation function designed for the roof assemblies by integrating strapping between the sheathing and the mass timber beams below. Overall this monitoring study shows the differential movement occurring among the glulam columns and the CLT wall is small and the wood roof has good drying performance.
PDF
Ajoutez cet article à votre liste de sélections pour demander le PDF - Add this item to your selection list to request the PDF
Documents
Less detail

Gestion de l'humidité en construction, bois lamellé-cloué

https://library.fpinnovations.ca/en/permalink/fpipub8036
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Date
Mars 2021
Material Type
Research report
Physical Description
7 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Laminate product
Performance
Wood frame
Moisture content
Series Number
InfoNote 2021 N 15
Language
French
Abstract
Le bois lamellé-cloué (NLT – Nail-laminated Timber) est un élément massif composé de bois de sciage souvent utilisé comme élément de structure intérieur pour les planchers, les toits, les murs et les cages d'ascenseur/escalier. Étant donné que l’humidification prolongée du bois peut provoquer des taches, de la moisissure, des variations dimensionnelles excessives (parfois suffisantes pour provoquer la défaillance des attaches), et même la pourriture et la perte de résistance, l'humidité est un facteur important à prendre en compte lors de travaux de construction avec du bois lamellé-cloué. Le présent document vise à fournir de l’information technique pouvant aider les architectes, les ingénieurs et les constructeurs à évaluer les risques d’humidification du bois lamellé-cloué pendant la construction de bâtiments et à prendre les mesures appropriées pour atténuer ces risques.
Documents

InfoNote2021N15F.pdf

Read Online Download
Less detail

Instrumentation for monitoring performance in a six-storey building in Vancouver built for high energy performance

https://library.fpinnovations.ca/en/permalink/fpipub7512
Author
Wang, Jieying
Thomas, Tony
Date
March 2018
Edition
49833
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Thomas, Tony
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Edition
49833
Material Type
Research report
Physical Description
24 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Monitoring
Performance
Buildings
Energy
Moisture content
Air
Series Number
Transformative Technology ; TT 2018
Language
English
Abstract
This report documents the instrumentation installed for monitoring moisture, indoor air quality and differential movement performance in a six-storey building located in the City of Vancouver. The building has five storeys of wood-frame construction above a concrete podium, providing 85 rental units for residential and commercial use. It was designed and built to meet the Passive House standard and, once certified, will be the largest building in Canada that meets this rigorous energy standard. Although the design and construction focused on integrating a number of innovative measures to improve energy efficiency, much effort was also made to reduce construction costs. One example of the design measures is the use of a highly insulating exterior wall assembly that integrates rigid insulation between two rows of wall studs as interior air and vapour barriers. This monitoring study aims to generate data on long-term performance as part of FPInnovations’ effort to assist the building sector in developing durable and energy efficient wood-based buildings, which is expected to translate into reduced energy consumption and carbon emissions from the built environment. The monitoring focuses on measuring moisture performance of the building envelope (i.e., exterior walls, roof, and sill plates); indoor environmental quality including temperature, humidity, and CO2; and vertical differential movement between exterior walls and interior walls below roof/roof decks. In total, 79 instruments were installed during the construction. The next steps of this study will focus on collecting and analysing data from the sensors installed, and assessing performance related to the building envelope and vertical differential movement. FPInnovations will also collaborate with CanmetENERGY of Natural Resources Canada to monitor heat recovery ventilators and to assess whole-building energy efficiency and occupant comfort. This is expected to start after the mechanical systems are fully commissioned during occupancy. Results of these upcoming phases of work will be published in future reports.
Documents
Less detail

Taller and larger wood buildings : potential impacts of wetting on performance of mass timber buildings

https://library.fpinnovations.ca/en/permalink/fpipub40151
Author
Wang, Jieying
Date
March 2016
Material Type
Research report
Field
Sustainable Construction
Author
Wang, Jieying
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2016
Material Type
Research report
Physical Description
43 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Building construction
Laminate product
Moisture content
Performance
Wood frame
Series Number
W3279
Location
Vancouver, British Columbia
Language
English
Abstract
This report summarizes basic wood-moisture relationships, and reviews conditions conducive to adverse consequences of wetting, such as staining, mold growth, decay, strength reduction, and dimensional change and distortion. It also outlines solutions and available resources related to on-site moisture management and design measures. Sorption, including desorption (i.e., loss of moisture) and adsorption (i.e., gain of moisture), is the interaction of wood with the water vapour in the ambient environment. The consequent changes in the amount of bound moisture (or “hygroscopic moisture”) of pre-dried wood affect the physical and mechanical properties. However, the core of a mass timber responds slowly and is well protected from fluctuations in the service environment. Mold growth and fungal staining may occur in a damp environment with a high relative humidity or sources of water. Sorption alone does not increase the moisture content (MC) of pre-dried wood above the fibre saturation point and does not lead to decay. Wood changes its MC more quickly when it absorbs water compared with sorption. This introduces free water (or “capillary water”) and increases the MC above the fiber saturation point. Research has shown that decay does not start below a MC of 26%, when all other conditions are favourable for fungal growth. Decay can cause significant strength reduction, for toughness and impact bending in particular. For a wood member in service, the effect of decay is very complicated and depends on factors, such as the size of a member, loading condition, fungi involved, location and intensity of the attack. Appearance of decay does not reflect true residual stiffness or strength. For wood-based composites severe wetting without decay may affect the structural properties and performance due to damage to the bonding provided by the adhesive inside. There are large variations among wood species, products and assemblies in their tendency to trap moisture and maintain durability. For a given wood species, the longitudinal direction (vs. the transverse directions) and the sapwood (vs. heartwood) absorb water more quickly. Capillaries between unglued joints (e.g., some CLT, glulam), exposed end grains, and interconnected voids inside a product increase the likelihoods of moisture entrapment, slow drying, and consequently decay. Many mass timber products, composites in particular, may be modified to reduce these issues. Measures should also be taken in design, during construction, or building operation to reduce the moisture risk and increase the drying ability. It is also important to facilitate detection of water leaks in a mass timber building and to make it easier to repair and replace members in case damage occurs. Preservative-treated or naturally durable wood should be used for applications that are subjected to high moisture risk. Localized on-site treatment may be appropriate for specific vulnerable locations. Changing environmental conditions may cause issues, such as checking, although it does not compromise the structural integrity in most cases. Measures may be taken to allow the timbers to adjust to the service conditions slowly (e.g., through humidity control), particularly in the first year of service. Overall there is very little information about the potential impacts that various wetting scenarios during construction and in service could realistically have on mass timber products and systems. The wetting and drying behaviour, impacts of wetting and biological attack on the structural capacity, and the behaviour under extreme environmental conditions, such as the very dry service environment that occurs during the winter in a northern continent, should be assessed to improve design of mass timber buildings.
Documents
Less detail