Currently, mass timber building designs commonly incorporate a concrete floor topping. This can improve building accoustics by increasing the mass of the assembly, reduce floor vibration and create a smooth flat surface to install finish flooring on. The installation of concrete requires formwork, pouring and finishing the concrete and time to cure which adds to project schedules. One way to address this is to use mass timber elements that are prefabricated with concrete toppings preinstalled. Replaceing the concrete floor toppings wiht dry alternatives, such as cement board, may also reduce construction timelines, while still ensuring adequate acoustic and vibration performance. Cement board needs only to be screwed in place and can be walked on immediately after installation; this reduction in construction time may reduce overall project costs and help make wood buildings more cost competitive than other types of construction.
The purpose of this guide is to provide an introduction to the concept of encapsulated mass timber construction. This guide provides an overview of encapsulation techniques for mass timber construction, and other related fire protection measures, and summarizes some approved encapsulation materials and application methods and identifies additional requirements for safety during construction. This guide is intended to help architects, engineers and designers by reducing uncertainty and allowing for more confidence in design, as well as providing authorities having jurisdiction and inspectors with a reference for simple design review.
Funded by Ontario Ministry of Natural Resources and Forestry through FPInnovations with Morrison Hershfield Limited
FPInnovations conducted a research project to study the construction of mid-rise wood exit shafts in Ontario and Québec. The scope of the project included an investigation into the concerns that have been raised in regards to the use of wood exits in mid-rise buildings, an analysis of recent Canadian fire statistics in residential multi-family structures, and a fire demonstration of a mass timber wall and supported light-frame floor. This report describes the fire demonstration completed as part of this project; this report acts as a supplement to the full project report.
FPInnovations in collaboration with 475 High Performance Building Supply and the Canadian Wood Council (CWC) engaged in a project to introduce wood fibre insulation products into Canadian construction through a series of high profile demonstration buildings. Dry process wood fibre insulation products have been in use in a variety of structures throughout Europe for more than 25 years. While the market for wood fibre insulation in Europe is both developed and growing, very little is used in Canada and the United States. The goal of this project is to demonstrate the use of wood fibre insulation products in a range of building types with target market areas in the Pacific Region, the Prairie Provinces, and Eastern Canada.
Wood fibre insulation was installed into three different buildings in three different climate regions of Canada, a single family residence near Collingwood, ON, a co-op multi-family housing project in Saskatoon, SK, and a laneway house in Gibsons, BC. All three buildings were designed to meet or approach Passive House standards. Two of the buildings were originally designed to use rigid polymer foam insulation. The third building was designed from inception to use wood fibre insulation. In all cases, 475 High Performance Building Supply provided expertise in design and construction using wood fibre insulation. Adapting the building design and construction practices to use wood fibre insulation as exterior insulation was straightforward and easy. Performance monitoring instrumentation was installed in each building. Performance monitoring of each building is to be carried out for at least one year.
Wood fibre insulation seems to fit well into Canadian residential construction practices. In these demonstration buildings wood fibre insulation products were readily adapted into wall and roof systems that had originally called for other insulation products.
Based on experience in Europe and FPInnovations testing of wood fibre insulation products, wood fibre insulation products would be expected to perform well under Canadian and other North American conditions. The principal challenges to seeing wood fibre insulation products used more widely in Canada and across North America will be the establishment of manufacturing facilities here, along with educating architects, engineers, builders and owners of the advantages these products bring.
The objective of this work was to expose wood fibre insulation products through these demonstration buildings to accelerate their acceptance into Canadian and other North American markets. The project team intends to publicize the results of this demonstration building program to architects, engineers, builders and other potential users through selected websites and other publications.
In 2015, the National Building Code of Canada (NBCC) [1] adopted prescriptive provisions to allow the construction of mid-rise (5- and 6-storey) buildings using combustible construction. These types of buildings were already permitted under the British Columbia Building Code, as of 2009 [2]. In2014 the Province of Ontario filed an amendment to also allow mid-rise wood buildings, however, it required that the exit fire separations be built using noncombustible construction having a fire resistance rating (FRR) of not less than 1.5-hr, which was an increase from the 1-hr requirement in the NBCC. The Québec Construction Code has also filed amendments to allow mid-rise wood construction and also limits exit stairwells to use noncombustible construction.
Interior partition walls for non-residential and high-rise residential construction are an US$8 billion market opportunity in Canada and the United States (Crespell and Poon, 2014). They represent 1.6 billion ft² (150 million m²) of wall area where wood currently has less than 10% market share. To approach this market a new system would be needed to compete against the incumbent system (wood/steel stud plus gypsum). The system would need to have an installed cost before finishing of approximately US$5 per ft² or lower. The system would also need to meet several code requirements for strength, sound transmission and fire resistance (flame spread and burn through). Crespell and Poon further concluded that to be truly transformative, the system would also need to address major trends impacting the building industry including reducing labor, reducing skilled labor, reducing onsite waste, reducing call-backs, and easily recyclable with low environmental impact. A likely market entry point for wood-based interior partition systems may be in taller and larger wood buildings.
Work described in this report investigated the fabrication, installation, acoustic and combustion properties of prototype interior partition wall designs.
Two types of non-structural prototype interior wall panels designated Type A and Type C were installed between two offices in the FPInnovations Vancouver laboratory. Wood sill plates for mounting the prototype panels were fastened to the concrete floor, sides and top of the opening between the two offices to produce a frame for mounting the test panels. Panels were fastened to the frame using dry wall screws. This same method of installation is envisioned in practice. The installation method makes it easy and fast to both install and remove the wall panels.
Acoustic tests showed the difference in ASTC rating measured between a double wall composed of Type A and Type C prototype panels compared with a double wood stud wall with gypsum board faces was approximately 6 ASTC points. A 6 point difference would be clearly noticeable. Although the results of this study are largely qualitative, they suggest that the prototype interior partition panels would have an acoustic advantage compared to stud wall designs.
In a related study summarized in this report, the combustion properties of three prototype interior panel constructions, including Types A and C evaluated in this report, indicated that any of the three types of partition constructions could be used in combustible construction in accordance with Division B of the National Building Code of Canada.
A second related study, also summarized in this report, estimated an installed cost of US$4.07 per ft² including overhead and profit for unfinished panel partitions comparable to panel construction Type C (gypsum/OSB/wood fibre insulation) as evaluated in this study. Thus, there would appear to be potential installed and finished cost advantages for the wood-based panel partitions compared to steel or wood stud walls with gypsum faces.
Other potential advantages of the prototype interior partition panels compared with the most common, currently-used systems (wood/steel stud plus gypsum) include ease and speed of installation, ease and speed of removal, design flexibility, prefabrication including pre-finishing, and easy installation of services.
Based on the positive results of these exploratory studies, further development of wood-based interior partition systems including design, fabrication, installation and in-service performance would appear justified. Knowledge of the products and testing methods developed in these studies would be expected to speed further development.
Most buildings are designed to accommodate a certain range of movement. In design, it is important for designers to identify locations where potential differential movement could affect structural integrity and serviceability, predict the amount of differential movement and develop proper detailing to accommodate it. To allow non-structural materials to be appropriately constructed, an estimate of anticipated differential movement should be provided in the design drawings.
Simply specifying wood materials with lower MC at time of delivery does not guarantee that the wood will not get wet on construction sites and will deliver lower shrinkage amounts as anticipated. It is therefore important to ensure that wood does not experience unexpected wetting during storage, transportation and construction. Good construction sequencing also plays an important role in reducing wetting, the consequent wood shrinkage and other moisture-related issues.
Existing documents such as the APEGBC Technical and Practice Bulletin on 5- and 6-Storey Wood Frame Residential Building Projects, the Best Practice Guide published by the Canadian Mortgage and Housing Corporation (CMHC), the Building Enclosure Design Guide –Wood Frame Multi-Unit Residential Buildings published by the BC Housing- Homeowner Protection Office (HPO) provide general design guidance on how to reduce and accommodate differential movement in platform frame construction.
Movement in structures due to environmental condition changes and loads must be considered in design. Temperature changes will cause movement in concrete, steel and masonry structures. For wood materials, movement is primarily related to shrinkage or swelling caused by moisture loss or gain when the moisture content is below 28% (wood fiber saturation point). Other movement in wood structures may also include: settlement (bedding-in movement) due to closing of gaps between members and deformation due to compression loads, including instantaneous elastic deformation and creep. Differential movement can occur where wood frame is connected to rigid components such as masonry cladding, concrete elevator shafts, mechanical services and plumbing, and where mixed wood products such as lumber, timbers, and engineered wood products are used.
Evidence from long-term wood frame construction practices shows that for typical light frame construction up to three storeys high, differential movement can be relatively easily accommodated such as through specifying “S-Dry” lumber. However, differential movement over the height of wood-frame buildings becomes a very important consideration for taller buildings due to its cumulative effect. The APEGBC Technical and Practice Bulletin provides general design guidance and recommends the use of engineered wood products and dimension lumber with 12% moisture content for floor joists to reduce and accommodate differential movement in 5 and 6-storey wood frame buildings. Examples of differential movement concerns and solutions in wood-frame buildings can also be found in the Best Practice Guide published by the Canadian Mortgage and Housing Corporation and the Building Enclosure Design Guide –Wood Frame Multi-Unit Residential Buildings published by the Homeowner Protection Office of BC Housing.
This document illustrates the causes and other basic information related to vertical movement in wood platform frame buildings and recommendations on material handling and construction sequencing to protect wood from rain and reduce the vertical movement.
It is not possible or practical to precisely predict the vertical movement of wood structures due to the many factors involved in construction. It is, however, possible to obtain a good estimate of the vertical movement to avoid structural, serviceability, and building envelope problems over the life of the structure.
Typically “S-Dry” and “S-Grn” lumber will continue to lose moisture during storage, transportation and construction as the wood is kept away from liquid water sources and adapts to different atmospheric conditions. For the purpose of shrinkage prediction, it is usually customary to assume an initial moisture content (MC) of 28% for “S-Green” lumber and 19% for “S-Dry” lumber. “KD” lumber is assumed to have an initial MC of 15% in this series of fact sheets.
Different from solid sawn wood products, Engineered Wood Products (EWP) are usually manufactured with MC levels close to or even lower than the equilibrium moisture content (EMC) in service. Plywood, Oriented Strand Board (OSB), Laminated Veneer Lumber (LVL), Laminated Strand Lumber (LSL), and Parallel Strand Lumber (PSL) are usually manufactured at MC levels ranging from 6% to 12%. Engineered wood I-joists are made using kiln dried lumber (usually with moisture content below 15%) or structural composite lumber (such as LVL) flanges and plywood or OSB webs, therefore they are usually drier and have lower shrinkage than typical “S-Dry” lumber floor joists. Glued-laminated timbers (Glulam) are manufactured at MC levels from 11% to 15%, so are the recently-developed Cross-laminated Timbers (CLT). For all these products, low shrinkage can be achieved and sometimes small amounts of swelling can be expected in service if their MC at manufacturing is lower than the service EMC. In order to fully benefit from using these dried products including “S-Dry” lumber and EWP products, care must be taken to prevent them from wetting such as by rain during shipment, storage and construction. EWPs may also have lower shrinkage coefficients than solid wood due to the adhesives used during manufacturing and the more mixed grain orientations in the products, including the use of cross-lamination of veneers (plywood) or lumber (CLT). The APEGBC Technical and Practice Bulletin emphasizes the use of EWP and dimension lumber with 12% moisture content for the critical horizontal members to reduce differential movement in 5 and 6-storey wood frame buildings.