Building high energy efficiency has become a must to reduce carbon emission from the built environment and to meet needs of consumers. Industrialized construction provides an effective way to produce highly insulated and airtight building envelopes to achieve superior building performance, such as Net Zero Energy. However, it is important that as other attributes (e.g., seismic, wind, fire, vibration, etc.) are being addressed, further research is needed to develop well rounded building envelope solutions. Meanwhile, improvement may be made in automated production equipment and software to optimize and monetize these solutions.
This literature review aims to provide a general picture of retrofit needs, markets, and commonly used strategies and measures to reduce building energy consumption, and is primarily focused on energy retrofit of the building envelope. Improving airtightness and thermal performance are the two key aspects for improving energy performance of the building envelope and subsequently reducing the energy required for space heating or cooling. This report focuses on the retrofit of single family houses and wood-frame buildings and covers potential use of wood-based systems in retrofitting the building envelope of concrete and steel buildings.
Air sealing is typically the first step and also one of the most cost-effective measures to improving energy performance of the building envelope. Airtightness can be achieved through sealing gaps in the existing air barrier, such as polyethylene or drywall, depending on the air barrier approach; or often more effectively, through installing a new air barrier, such as an airtight exterior sheathing membrane or continuous exterior insulation during retrofit. Interface detailing is always important to achieve continuity and effectiveness of an air barrier. For an airtight building, mechanical ventilation is needed to ensure good indoor air quality and heat recovery ventilators are typically required for an energy efficient building.
Improving thermal resistance of the building envelope is the other key strategy to improve building energy efficiency during retrofit. This can be achieved by: 1. blowing or injecting insulation into an existing wall or a roof; 2. building extra framing, for example, by creating double-stud exterior walls to accommodate more thermal insulation; or, 3. by installing continuous insulation, typically on the exterior. Adding exterior insulation is a major solution to improving thermal performance of the building envelope, particularly for large buildings. When highly insulated building envelope assemblies are built, more attention is required to ensure good moisture performance. An increased level of thermal insulation generally increases moisture risk due to increased vapour condensation potential but reduced drying ability. Adding exterior insulation can make exterior structural components warmer and consequently reduce vapour condensation risk in a heating climate. However, the vapour permeance of exterior insulation may also affect the drying ability and should be taken into account in design.
Overall energy retrofit remains a tremendous potential market since the majority of existing buildings were built prior to implementation of any energy requirement and have large room available for improving energy performance. However, significant barriers exist, mostly associated with retrofit cost. Improving energy performance of the building envelope typically has a long payback time depending on the building, climate, target performance, and measures taken. Use of wood-based products during energy retrofit also needs to be further identified and developed.
This guide explores how the building industry in British Columbia can meet the challenges of reducing energy use in buildings, in part by effectively accounting for the impact of thermal bridging.
Most practitioners will find PART1 and Appendices A and B to be most useful. PART 1 outlines how to effectively account for thermal bridging. Appendices A and B provide a catalog of common building envelope assemblies and interface details, and their associated thermal performance data.
Researchers and regulators will be interested in PART 2 and PART 3, and Appendices C to E. They contain the cost-benefit analysis, and discussion on significance and further insights, of using this guide to mitigate thermal bridging in buildings.
[Available to the public: http://www.bchydro.com/powersmart/business/programs/new-construction.html?WT.mc_id=rd_construction]
L’industrie canadienne des portes et fenêtres en bois a vu sa part de marché fondre considérablement en Amérique du Nord au cours des dernières années. Cette diminution s’explique principalement par l’installation répandue de produits en PVC et autres matériaux qui sont faciles à fabriquer et nécessitent peu d’entretien au cours de leur durée de vie utile. De plus, les exigences d’efficacité énergétique toujours plus sévères, exprimées par des règlements gouvernementaux et le programme Energy Star, constituent une autre menace pour l’industrie des portes et fenêtres en bois.
L’objectif du projet consiste en le développement de portes et de fenêtres en bois de nouvelle génération offrant un meilleur rendement énergétique. Dans le cadre de projets de recherche antérieurs, une revue de la littérature a révélé l’existence, du côté européen, de portes et de fenêtres en bois offrant un rendement énergétique amélioré comparativement aux produits traditionnels. Des prototypes ont ainsi été développés au cours du présent projet en s’inspirant des produits européens : fenêtre avec cadre et châssis en bois, incluant un matériau isolant; porte d’extérieur de type plane avec matériau isolant à haute efficacité énergétique.
À partir de la version AutoCad des dessins techniques de la fenêtre à crémone, offerte par un partenaire industriel, des modifications ont été apportées aux composants du seuil, des montants et de la tête (cadre et châssis) afin de permettre l’insertion de matériel isolant de type Polyuréthane caractérisé par une conductivité thermique de 0,02 W/m K. Des composants en lamellé-collé ou avec barrière thermique ont permis des réductions du coefficient de transmission thermique Uw de l’ordre de 7 à 8 %. Cette réduction permettrait un reclassement de la fenêtre à crémone de la zone A vers la zone B selon le programme Energy Star. L’amélioration de la performance énergétique de la fenêtre à crémone, par l’insertion de matériel isolant dans les composants, représente un coût additionnel estimé par le manufacturier de l’ordre de 50 à 60 %, augmentation qui peut s’avérer un frein à la fabrication et la mise en marché de la nouvelle fenêtre avec composants isolés.
Dans le cadre du projet, une porte pleine a été conçue, en collaboration avec un manufacturier québécois, en s’inspirant d’un modèle français de porte-plane. Un matériau isolant à haute efficacité énergétique, un aérogel de silice, a été utilisé pour le prototype. La construction du prototype de la porte a été précédée par l’évaluation de son rendement énergétique, plus précisément son coefficient de transmission thermique globale (U), par modélisation informatique. Le rendement énergétique de trois versions différentes du prototype a été évalué en considérant deux épaisseurs de porte et deux épaisseurs d’isolant. Selon les résultats de simulation, la version la plus performante du prototype se compare avantageusement aux portes de PVC et acier actuellement sur le marché, rencontrant même les contraintes les plus sévères établies par Energy Star et le Code du bâtiment du Québec. Le projet a donc démontré le potentiel de fabrication d’une porte en bois offrant un haut rendement énergétique.
Il est devenu indispensable de construire des bâtiments à haute efficacité énergétique pour réduire les émissions de carbone dans l’environnement et répondre aux besoins des consommateurs. La construction industrialisée est un bon moyen de produire des enveloppes de bâtiment bien isolées et étanches à l’air et, par le fait même, d’accroître la performance énergétique des bâtiments (p. ex consommation énergétique nette zéro). Cependant, il est important de tenir compte d’autres attributs (p. ex. charges sismiques, vent, feu, vibrations, etc.). Il faudra poursuivre les recherches pour trouver des solutions durables en matière d’enveloppes de bâtiment. Entre-temps, il est possible d’améliorer l’équipement de production automatisée et le logiciel qui l’accompagne afin d’optimiser et de rentabiliser ces solutions.
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practitioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
A survey was conducted under the “Renaissance in Wood Construction” project that was funded by Natural Resources Canada (NRCan) under the Transformative Technologies Program to seek information about numerical modelling on mass timber buildings. A Questionnaire was sent to designers and researchers covering different performance attributes. The compiled information includes the available software packages and resources of empirical equations that are used by the designers and researchers for predicting the structural, fire, acoustic, and building envelope (energy and durability) performance of mass timber buildings, and the challenges that they are facing in using those tools. This report summarizes the input obtained from practicing designers and researchers who responded to this survey.