Skip header and navigation

121 records – page 1 of 13.

Advanced wood-based solutions for mid-rise and high-rise construction: analytical models for balloon-type CLT shear walls

https://library.fpinnovations.ca/en/permalink/fpipub52680
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Date
July 2018
Material Type
Research report
Field
Sustainable Construction
in balloon-type mass- timber buildings. To quantify the performance of balloon-type CLT structures subjected
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Contributor
Natural Resources Canada. Canadian Forest Service
Date
July 2018
Material Type
Research report
Physical Description
83 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Cross Laminated Timber
Performance
Building construction
Building materials
Energy
Language
English
Abstract
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Documents
Less detail

Advanced wood-based solutions for mid-rise and high-rise construction: modelling of timber connections under force and fire

https://library.fpinnovations.ca/en/permalink/fpipub49851
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Date
March 2018
Material Type
Research report
Field
Sustainable Construction
Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Contributor
Natural Resources Canada. Canadian Forest Service
Date
March 2018
Material Type
Research report
Physical Description
85 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber
Fire
Performance
Timber
Language
English
Abstract
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections, in particular under combination of various types of loads and fire, was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models for use in performance-based design for wood buildings, in particular, seismic and fire performance-based design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine and can be added to most general-purpose finite element software. The developed model was used to model the structural performance of a laminated veneer lumber (LVL) beam and a glulam bolted connection under force and/or fire. Compared with the test results, it shows that the developed model was capable of simulating the mechanical behaviour of LVL beam and glulam connection under load and/or fire with fairly good correlation. With this model, it will allow structural designers to obtain the load-displacement curve of timber connections under force, fire or combination of the two. With this, key design parameters such as capacity, stiffness, displacement and ductility, which are required for seismic or fire design, can be obtained. It is recommended that further verification and calibration of the model be conducted on various types of wood products, such as CLT, glulam, SCL and NLT, and fasteners, e.g. screw and rivet. Moreover, a database of the thermal and structural properties of the wood members and fasteners that are commonly used in timber constructions need to be developed to support and facilitate the application of the model.
Documents
Less detail

Advanced Wood-based Solutions for Mid-rise and High-rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://library.fpinnovations.ca/en/permalink/fpipub49859
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul D.
Date
May 2018
Material Type
Research report
Field
Sustainable Construction
is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul D.
Contributor
Natural Resources Canada. Canadian Forest Service
Date
May 2018
Material Type
Research report
Physical Description
117 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Cross Laminated Timber
Performance
Building construction
Building materials
Energy
Language
English
Abstract
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community. Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissiaptors in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted on two main parts: material tests and system tests. In the material tests part of the program, a total of 110 compression tests were conducted to determine the load-deformation properties of four different engineered wood products (LVL, LSL, Glulam and CLT) in various directions. The LVL, LSL and Glulam specimens tested under compression parallel to grain had similar linear elastic behaviour with limited ductility. The CLT specimens tested under compression in the major-axis direction had linear elastic behaviour with moderate plasticity. Depending on the type of engineered wood product, typical failure modes included crushing, shear, wedge split and splitting. The compressive strength of the products tested ranged from 42.1 to 53.5 MPa, the global MOE (of the entire specimen under compression) varied between 6390 and 9554 MPa, the local (near the crushing surface) MOE parallel to grain was in the range of 2211 to 5090 MPa, while the local to global MOE ratio ranged from 29.2 to 58.0%, and was higher with the increase in the oven-dry density. The specimens of the four different engineered wood products tested under compression perpendicular to grain or in the minor-axis direction had elastic-plastic behaviour with a clearly defined plastic plateau. Crushing (densification) of the fibres perpendicular to grain was the main failure mode for all specimens, and was in some cases followed by in-plane shear failure or cracking perpendicular to grain. Compression parallel to grain in the middle layer that was followed by its delamination and buckling was a unique failure mode for CLT specimens tested under compression in the minor strength direction. The compressive strength of the engineered wood products tested were in the range of 4.8 to 27.8 MPa, while the global and local MOE perpendicular to grain were in the range of 244 to 2555 MPa, and 320 to 1726 MPa, respectively. The compressive strength and global MOE perpendicular to grain increased with an increase in the oven-dry density. The results show no well-defined trend for the local MOE perpendicular to grain. The specimens loaded in the centre perpendicular to grain had higher strength, global and local MOE than those loaded at the end. A convenient and timesaving design for the axial energy dissipators (fuses) was developed by replacing the epoxy in the original design with two half-tubes. Compared to the original design of fuses with epoxy, the new design with two half-tubes had similar necking failure mode and a longer failure displacment, thus providing user-friendly fuses that performed similar or even better than the original design. In the system tests part of the program, a total of 17 different PT and Pres-Lam CLT walls with six different configurations were tested under monotonic and reversed cyclic loading. The studied parameters included the level of PT force, the position of the fuses, and the number of UFPs. CLT shear walls subjected only to post-tensioning, had non-linear elastic behaviour. The behaviour of the PT walls with and without energy dissipators was relatively similar under monotonic and cyclic loading. The strength degradation observed during the cyclic tests was low in all wall configurations suggesting that very little damage was inflicted upon the structure during the first cycles at any deformation level. Four major failure modes, including yielding and buckling of fuse, crushing and splitting of wood at the end of wall, and buckling of lumber in the exterior-layer of CLT wall, were observed in the tests. The yielding in fuses occurred at the early stage of loading as designed and the other failure modes happened when the lateral drift reached or beyond 2.5%. The initial stiffness of the single-panel PT CLT walls tested ranged from 1.80 to 2.31 kN/mm, the load at the decompression point and 2.5% drift were in the range of 4.2 to 14.9 kN and 32.7 to 45.9 kN, respectively. The initial stiffness of the single-panel Pres-Lam CLT walls tested ranged from 1.69 to 2.44 kN/mm, the load at the decompression point and 2.5% drift were in the range of 21.0 to 30.2 kN and 59.6 to 69.8 kN, respectively. All the mechanical properties increased with an increase in the PT force. The average initial stiffness and the load at 2.5% drift of the coupled-panel Pres-Lam CLT walls tested were 4.59 kN/mm and 151.3 kN, respectively, while the load at the decompression point increased from 58.4 to 69.7 kN by increasing the number of UFP. The test results show that the behaviour of the Pre-Lam CLT shear walls can be de-coupled and a “superposition rule” can be applied to obtain the stiffness and resistance of such system. The test results gave a valuable insight into the structural behaviour of the PT and Pres-Lam CLT shear wall under in-plane lateral loads. The data from the testing will be used in the future for development of numerical computer models. They will also be used for development of design guidelines for this system. All tests conducted in this study and the analyses in the future modelling research will form the basis for developing future design guidelines for PT and Pres-Lam mass timber systems.
Documents
Less detail

Adverse skidding using a Tigercat 635E assisted by a T-Winch 10.1

https://library.fpinnovations.ca/en/permalink/fpipub49844
Author
Strimbu, Vladimir
Boswell, Brian
Date
May 2018
Material Type
Research report
Field
Fibre Supply
) ........................................... 16 FPInnovations Page 5 Introduction The timber supply profile in western Canada
Author
Strimbu, Vladimir
Boswell, Brian
Date
May 2018
Material Type
Research report
Physical Description
20 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Winches
Productivity
Timber
Steep slopes
Safety
FPI TR
Series Number
Technical Report ; TR 2018 n.23
Language
English
Abstract
This paper presents the productivity and utilization of a system comprising a skidder and an assisting self-propelled winch working on steep terrain. Environmental impact is also assessed for both conventional and winch-assisted skidding.
Documents
Less detail

An evaluation of four methods for processing timber at the stump

https://library.fpinnovations.ca/en/permalink/fpipub44029
Author
Meek, Philippe
Date
December 1993
Material Type
Research report
Field
Fibre Supply
Author
Meek, Philippe
Date
December 1993
Material Type
Research report
Physical Description
8 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Processing
Harvesters
Trees
Rottne
Timber
Stumps
Language
English
Abstract
FACONNAGE
Bois courts
Troncs entiers
FACONNEUSES
ABATTEUSES-FACONNEUSES
Ébrancheuses
TETE DE FACONNAGE STEYR KP-40
FACONNEUSE ROTTNE-RAPID
TETE D'ABATTAGE-FACONNAGE KOEHRING 762
FLECHE D'ÉBRANCHAGE LOGMA
CHASSIS PORTEUR KOEHRING 618
Documents
Less detail

An expert system for timber connection design

https://library.fpinnovations.ca/en/permalink/fpipub37384
Author
Varoglu, E.
Date
March 1995
Material Type
Research report
Field
Sustainable Construction
/ a / 7 PROJECT TITLE AN EXPERT SYSTEM FOR TIMBER CONNECTION DESIGN T L A BUILDING SYSTEMS
Author
Varoglu, E.
Contributor
Canada. Canadian Forest Service.
Date
March 1995
Material Type
Research report
Physical Description
2 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Timber
Structural engineering
Sample
Joints
Design
Building construction
Series Number
W-1217
Location
Vancouver, British Columbia
Language
English
Abstract
A system which integrates architectural and structural design issues for timber connections will be developed for a limited number of connections and loading conditions which are dealt with in various national and international codes and standards. The scope of engineering issues relevant to connections will be expanded to include a wide range of timber connections and engineering solutions which are not covered by code procedures. This will include cases such as 3-dimensional loading configurations, dynamic analysis of connections and more rigorous analysis procedures. Progress on these objectives is described.
Building construction - Design
Joints and fastenings - Design
Structural engineering
Engineering - Timber
Documents
Less detail

Assemblage des éléments en CLT

https://library.fpinnovations.ca/en/permalink/fpipub42937
Author
Mohammad, M.
Munoz, W.
Date
January 2011
Material Type
Research report
Field
Sustainable Construction
Author
Mohammad, M.
Munoz, W.
Date
January 2011
Material Type
Research report
Physical Description
78 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Timber
Laminate product
Building construction
Design
Language
French
Abstract
Le faible poids des produits en bois lamellé-croisé (CLT) combiné à leur degré élevé de préfabrication, ajoutés à la nécessité de fournir des produits de substitution à base de bois à l’acier et au béton, ont sensiblement contribué au développement des produits et des systèmes de CLT, tout particulièrement en ce qui a trait aux bâtiments de moyenne hauteur (5 à 9 étages). Tandis que ce produit est bien établi en Europe, la mise en place des produits et des systèmes de CLT en est à ses débuts au Canada et aux États-Unis. L’efficacité structurale du système de plancher agissant comme diaphragme et celle des murs en matière de résistance aux charges latérales dépend de l’efficacité des systèmes de fixation et des détails de connexion employés pour relier différents panneaux et assemblages. De longues vis autotaraudeuses sont généralement recommandées par les fabricants de CLT et sont utilisées pour relier les panneaux entre eux dans la construction de planchers ainsi que pour les assemblages plancher/mur. Cependant, il existe d’autres éléments et systèmes de fixation traditionnels et innovateurs qui peuvent être employés dans les assemblages de CLT. Ce chapitre met l’accent sur quelques systèmes de connexion qui reflètent les pratiques actuelles, certains étant conventionnels, d’autres étant brevetés. En raison de l’introduction récente du CLT sur le marché de la construction, on s’attend à ce que de nouveaux types de connexion soient développés au fil du temps. Une variété de questions liées à la conception des connexions spécifiques aux assemblages de CLT y sont présentées. L’approche de conception européenne est présentée et l’applicabilité des dispositions de conception de la norme CSA O86-09 pour les fixations traditionnelles du CLT telles que les boulons, les goujons, les clous et les vis à bois sont passées en revue et des lignes directrices sont également fournies. L’information fournie dans ce chapitre est dédiée aux concepteurs canadiens, un groupe ayant exprimé un vif intérêt pour la spécification des produits de CLT dans les applications non résidentielles et multi-étagées. Cependant, d’autres études seront nécessaires pour aider les concepteurs dans le développement de normes de conception et de procédures conformes aux normes canadiennes de conception des matériaux et au code national du bâtiment du Canada (CNBC). L’information technique sera également employée pour faciliter l’acceptation des produits de CLT en Amérique du Nord
Documents
Less detail

Assessing the flammability of mass timber components, a review

https://library.fpinnovations.ca/en/permalink/fpipub53026
Author
Mehaffey, J.R. (Jim)
Dagenais, Christian
Date
February 2014
Material Type
Research report
Field
Sustainable Construction
Assessing the Flammability of Mass Timber Components: A Review by Jim Mehaffey, Ph.D. CHM
Author
Mehaffey, J.R. (Jim)
Dagenais, Christian
Date
February 2014
Material Type
Research report
Physical Description
27 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Building code
Fire
Performance
Design
Timber
Language
English
Abstract
The report concludes with the recommendation that it would be useful to run an extensive set of cone calorimeter tests on SCL, glue-laminated timber and CLT products. The fundamental data could be most useful for validating models for predicting flame spread ratings of massive timber products and useful as input to comprehensive computer fire models that predict the course of fire in buildings. It is also argued that the cone calorimeter would be a useful tool in assessing fire performance during product development and for quality control purposes.
Documents
Less detail

Behaviour and reliability of wood-frame systems under axial loads exposed to fire

https://library.fpinnovations.ca/en/permalink/fpipub5084
Author
Van Zeeland, I.
Date
March 2000
Edition
41933
Material Type
Research report
Field
Sustainable Construction
Author
Van Zeeland, I.
Contributor
Canada. Canadian Forest Service
Date
March 2000
Edition
41933
Material Type
Research report
Physical Description
16 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Wood frame
Wood
Timber
Systems
Resistance
Research
Building construction
Series Number
Canadian Forest Service No. 09
E-3399
Location
Sainte-Foy, Québec
Language
English
Abstract
Building construction - Fire research
Structural Timber - Fire Resistance
Wood-frame systems - Fire resistance
Documents
Less detail

Block shear testing of CLT panels : an exploratory study

https://library.fpinnovations.ca/en/permalink/fpipub2759
Author
Casilla, Romulo C.
Pirvu, Ciprian
Wang, Brad J.
Lum, Conroy
Date
April 2011
Edition
39375
Material Type
Research report
Field
Sustainable Construction
Author
Casilla, Romulo C.
Pirvu, Ciprian
Wang, Brad J.
Lum, Conroy
Date
April 2011
Edition
39375
Material Type
Research report
Physical Description
35 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Building Systems
Subject
Timber
Laminate product
Design
Building construction
Series Number
Transformative Technologies #TT1.07
W-2846
Location
Vancouver, British Columbia
Language
English
Abstract
A study was conducted with the primary objective of examining the efficacy of a standard block shear test method to assess the bond quality of cross-laminated timber (CLT) products. The secondary objective was to examine the effect of pressure and adhesive type on the block shear properties of CLT panels. The wood material used for the CLT samples was Select grade nominal 25 x 152-mm (1 x 6-inch) Hem-Fir. Three adhesive types were evaluated under two test conditions: dry and vacuum-pressure-dry (VPD), the latter as described in CSA standard O112.10. Shear strength and wood failure were evaluated for each test condition. Among the four properties evaluated (dry and VPD shear strength, and dry and VPD wood failure), only the VPD wood failure showed consistency in assessing the bond quality of the CLT panels in terms of the factors (pressure and adhesive type) evaluated. Adhesive type had a strong effect on VPD wood failure. The different performance levels of the three adhesives were useful in providing insights into how the VPD block shear wood failure test responds to significant changes in CLT manufacturing parameters. The pressure used in fabricating the CLT panels showed a strong effect on VPD wood failure as demonstrated for one of the adhesives. VPD wood failure decreased with decreasing pressure. Although dry shear wood failure was able to detect the effect of pressure, it failed to detect the effect of adhesive type on the bond quality of the CLT panels. These results provide support as to the effectiveness of the VPD block shear wood failure test in assessing the bond quality of CLT panels. The VPD conditioning treatment was able to identify poor bondline manufacturing conditions by observed changes in the mode of failure, which is also considered an indication of wood-adhesive bond durability. These results corroborate those obtained from the delamination test conducted in a previous study (Casilla et al. 2011). Along with the delamination test proposed in an earlier report, the VPD block shear wood failure can be used to assess the CLT bond quality. Although promising, more testing is needed to assess whether the VPD block shear wood failure can be used in lieu of the delamination test. The other properties studied (shear strength and dry wood failure), however, were not found to be useful in consistently assessing bond line manufacturing quality.
Building construction - Design
Cross-laminated timber
Documents
Less detail

121 records – page 1 of 13.