Skip header and navigation

2 records – page 1 of 1.

Augmentation de la vitesse de déplacement des véhicules d'exploitation hors-route

https://library.fpinnovations.ca/en/permalink/fpipub43098
Author
Radforth, J.R.
Date
1978
Material Type
Research report
Field
Fibre Supply
Author
Radforth, J.R.
Date
1978
Material Type
Research report
Physical Description
26 p.
Sector
Forest Operations
Field
Fibre Supply
Research Area
Forestry
Subject
Trucks
Velocity
Language
French
Abstract
Off road vehicles
Harvesting equipment
MACHINE DESIGN
Vehicle speed
Mobility
Documents
Less detail

Hardwood Initiative - Part 5: Development of new processes and technologies in the hardwood industry (Project 16) ; Testing the impacts of tree and stand attributes on the variability of acoustic velocity in standing trees (ST300) and logs (HM200)

https://library.fpinnovations.ca/en/permalink/fpipub5733
Author
Ung, C.-H.
Duchesne, I.
Guo, X.J.
Swift, E.
Date
January 2011
Edition
39324
Material Type
Research report
Field
Sustainable Construction
(Project 16) Testing the impacts of tree and stand attributes on the variability of acoustic velocity
Author
Ung, C.-H.
Duchesne, I.
Guo, X.J.
Swift, E.
Date
January 2011
Edition
39324
Material Type
Research report
Physical Description
6 p.
Sector
Wood Products
Field
Sustainable Construction
Research Area
Advanced Wood Materials
Subject
Velocity
Hardwoods
Acoustic
Series Number
Transformative Technologies Program ; Project No. TT5.15
201002825
Location
Québec, Québec
Language
English
Abstract
Hardwood Initiative Project is based on two paradigms. First, the end-use potential and value of a wood product basket can be determined by the properties of its wood and should be quantified as much as possible before trees are harvested. Second, as the correlations between site conditions and wood fibre attributes can be changed by silvicultural treatments, it would be possible to optimize the wood production in terms of quantity and quality through a better understanding of silvicultural impacts on changes in wood fibre properties. This document presents the preliminary results of a research component of the project related to acoustic velocity. It focuses on testing the impacts of tree and stand attributes on the variability of non-destructive velocity (ST300 non-destructive measurement in standing tree) and of destructive velocity (HM200 destructive measurement in log). The acoustic measurements were conducted in 30 plots of sugar maple mixed with yellow birch in New Brunswick. Among the trees measured, 64 trees have been subjected to both non-destructive and destructive velocity measurement. Regression analysis by mixed model showed no significant impact of stand attributes (stand basal area and stand height) on the variation of both velocities. In addition, the defects represented by stem deformation, hole, split, wound, and stump swelling, had no significant impact on both velocities. By cons, the test showed a significant correlation between both velocities and dbh and light crown area of the tree. Non-destructive velocity was better explained by dbh and light crown than the destructive velocity. These results open the potential to produce an equation to predict the non-destructive acoustic velocity of the tree using simple tree attributes (e.g., dbh and light crown) as predictors, and to prescribe the thinning intensity for a desired level of velocity and then a desired level of wood density or stiffness. Full title: Hardwood Initiative - Part 5: Development of new processes and technologies in the hardwood industry (Project 16) : Testing the impacts of tree and stand attributes on the variability of acoustic velocity in standing trees (ST300) and logs (HM200)
Hardwoods
Acoustic velocity
Documents
Less detail