Skip header and navigation

8 records – page 1 of 1.

Evaluation of green veneer clipping

https://library.fpinnovations.ca/en/permalink/fpipub37693
Author
Wang, Brad J.
Xu, H.
Date
April 2004
Material Type
Research report
Field
Wood Manufacturing & Digitalization
Author
Wang, Brad J.
Xu, H.
Date
April 2004
Material Type
Research report
Physical Description
34 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer
Series Number
3972
W-2049
Location
Vancouver, British Columbia
Language
English
Abstract
In this study, we conducted mill tests to: 1) measure the distributions of veneer clipping width and moisture content (MC) for different green veneer sorts; and 2) evaluate the tangential veneer shrinkage at different MC levels for common veneer species. We also performed lab tests to evaluate the effect of veneer species, log location, veneer thickness, sapwood and heartwood, drying conditions (temperature and humidity) and final veneer moisture (MC) on veneer width shrinkage. Based on the mill measurements, although a positive trend exists between veneer clipping width and green veneer MC, the correlation is generally weak for common softwood species such as SPF and Douglas-fir veneer. This result contradicts the prevailing concept of veneer MC clipping. The primary reason could be attributed to the inaccurate measurement of green veneer MC with the current industrial MC sensors. Based on both mill and lab testing results, a good correlation exists between veneer width shrinkage and final veneer MC. However, the correlation between veneer width shrinkage and green veneer MC is weak or at most fair for common softwood species. Also within each veneer sort, this correlation is very poor. These results bring up an issue as to what strategy to use to perform green veneer clipping. Based on both mill and lab measurements, a shrinkage of 1.5 ~ 3% in veneer width occurs when final average veneer MC is still above fiber saturation point (FSP). This contradicts the well-established theory that shrinkage of wood only starts to occur when its MC drops below the FSP. The main reason is probably due to the MC gradient through veneer thickness, and MC variation across veneer width. Once the MC of the wood cells of the veneer surface drops down to FSP, it starts to shrink. However, due to the constraint caused by the wood cells of the inner part of veneer with MC above the FSP, the internal stresses develop and shrinkage decreases. Veneer width shrinkage varies among species and logs, and also within the log, namely, from sapwood to heartwood. It is further affected by drying conditions, veneer thickness and final veneer MC. At fast or conventional drying conditions such as higher temperature and faster airflow, veneer drying rate increases, the veneer MC gradient through the thickness becomes significant. In this manner, constraints, resulting from uneven shrinkage and internal stress, occur between the outer and inner part of the veneer. As a result, veneer width shrinkage is reduced compared to slow or air drying conditions. For common softwood species such as SPF and Douglas-fir, the effect of drying temperature on tangential veneer shrinkage is more pronounced with heartwood veneer than sapwood veneer. In other words, at a higher drying temperature, shrinkage of heartwood veneer is reduced more than that of sapwood veneer. Meanwhile, the effect of humidity on veneer width shrinkage is negligible. At the same conventional drying condition, for Douglas-fir sapwood veneer, thicker veneer (1/8”) shrinks more than thinner veneer (1/10”); In contrast, for Douglas-fir heartwood veneer, thicker veneer (1/8”) shrinks less than thinner veneer (1/10”). The shrinkage of thicker veneer (1/8”) is more considerably affected by the drying conditions compared to that of thinner veneer (1/10”). The difference in shrinkage between sapwood and heartwood veneer is smaller for thinner veneer (1/10”) than for thicker veneer (1/8”).
Veneers - Clipping
Documents
Less detail

Evaluation of green veneer moisture content distribution and industrial moisture content sensors

https://library.fpinnovations.ca/en/permalink/fpipub37694
Author
Wang, Brad J.
Dai, Chunping
Xu, H.
Groves, C. Kevin
Date
April 2004
Material Type
Research report
Field
Wood Manufacturing & Digitalization
No.: 3972 Evaluation of Green Veneer Moisture Content Distribution
Author
Wang, Brad J.
Dai, Chunping
Xu, H.
Groves, C. Kevin
Date
April 2004
Material Type
Research report
Physical Description
36 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer
Measurement
Series Number
3972
W-2050
Location
Vancouver, British Columbia
Language
English
Abstract
It is important to improve drying productivity since this process is the bottleneck in plywood production. To address this issue, we evaluated the veneer moisture content (MC) distribution and the accuracy of radio frequency (RF) sensors both in the laboratory and in mill trials in this study. We analyzed the distribution of green veneer moisture content (MC) and density from sapwood to heartwood for lodgepole pine logs via veneer peeling in the Forintek’s composites pilot plant. The results show that the MC distribution appears to be a dual-peak pattern both for heartwood and for sapwood. The position of the first peak is more consistent whereas the second peak varies more among logs. This information is useful for determining the proper number of green veneer sorts and the optimum cut-off MC level for each sort. Readings of the radio frequency (RF) sensor are affected by veneer species, veneer density, veneer thickness, temperature, green veneer MC, grain angle, and distance between the sensor source and veneer surface. Of these variables, veneer density, veneer species and the distance are found to be the three main factors affecting the readings of the sensor. Based on the measurement results from different species, we conclude that the RF sensor is only suitable for measuring green veneer MC below 80%. The correlation between readings of the sensor and green veneer MC varies from species to species. In general, this correlation could be improved using an exponential or a power equation. The readings of mill sensor are more inconsistent than those of the lab sensor for the heart sort veneer. The lab sensor underestimates MC for the heart sort veneer and overestimates MC for the sap sort veneer. However, the mill sensor overestimates in both positive and negative ways for each sort. To improve the accuracy of the readings, the sensor needs to be calibrated based on the species and veneer thickness, and the distance between the sensor source and veneer surface has to be kept as small as possible. However, this is not practical for the spruce, pine and subalpine fir (SPF) group since these species are not separated on a commercial basis. We conducted three mill visits to: 1) measure the distribution of green veneer MC for different veneer sorts, and 2) assess the accuracy of current green veneer sorting. The results demonstrate that the accuracy of moisture sorting differs among mills and species, and the species mix like SPF generates larger MC variation within each sort. In general, the heart veneer sort is well done, but there is a significant overlapping between light-sap and sap veneer sorts. This indicates that the current industrial RF sensors cannot ideally sort higher MC veneer. The results also show that there is potential for more accurate green veneer sorting which would result in a 5% increase in drying productivity. This improvement would generate more than $1 million in annual savings per mill.
Veneers - Moisture content
Moisture content - Measurement
Documents
Less detail

Investigation on air permeability of aspen veneer and glueline

https://library.fpinnovations.ca/en/permalink/fpipub5581
Author
Wang, Brad J.
Zhou, X.
Dai, Chunping
Date
April 2004
Edition
37695
Material Type
Research report
Field
Wood Manufacturing & Digitalization
No.: 3901 Investigation on Air Permeability of Aspen Veneer and Glueline
Author
Wang, Brad J.
Zhou, X.
Dai, Chunping
Date
April 2004
Edition
37695
Material Type
Research report
Physical Description
27 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer manufacturing
Veneer gluing
Veneer
Populus
Gluing
Aspen
Series Number
3901
W-2051
Location
Vancouver, British Columbia
Language
English
Abstract
In this study, we conducted systematic experiments on air permeability of aspen veneer and glueline in terms of panel compression ratio (or applied platen pressure), degree of glue cure (or pressing time), veneer type (sapwood or heartwood veneer) and glue spread level. We also compared the air permeability data of aspen veneer and veneer-ply (2-ply veneer panel) to aspen solid wood and aspen oriented strandboard (OSB). Based on this study, the following conclusions were drawn: For laminated veneer lumber (LVL) and plywood panels, the compression ratio is the most important factor affecting the panel permeability, followed by veneer type (sapwood or heartwood veneer), glue spread and degree of glue cure (or pressing time). The air permeability of the glueline decreases in the course of glue curing; however, its order of magnitude remains the same as that of uncured glue. The reduction in panel permeability mainly results from small densification of each veneer ply instead of the sealing effect of the glueline. Therefore, during LVL/plywood hot-pressing, the glueline does not serve as a main barrier to the gas and moisture movement as commonly speculated. However, due to the substantial change in the magnitude of panel permeability merely within a 5% compression ratio, the convection effect on heat and mass transfer is considered to be very limited. The air permeability of sapwood veneer is about twice that of heartwood veneer without compression. However, with compression, the air permeability of heartwood veneer drops much faster than that of sapwood veneer. The permeability of a sapwood veneer panel is 5.5 ~ 7.0 times higher than that of a heartwood veneer panel merely with a compression ratio in the range of 2.5% ~ 5%. In practice, it implies that 1) panels made from sapwood veneer are more treatable with preservatives; and 2) by controlling panel permeability through veneer incising, proper panel lay-up and densification, mills could reduce blows/blisters during hot-pressing. The air permeability of aspen wood or veneer is not affected by wood density. The air permeability of aspen LVL/plywood panels is 1.5~ 2 times larger than that of aspen solid wood due to the existence of lathe checks, but is significantly lower than that of aspen OSB at the same density level of the panel. On average, commercial LVL/plywood panels have almost the same magnitude of air permeability as commercial OSB. However, due to the absence of voids and small horizontal density variation, LVL/plywood panels will be less permeable than OSB.
Populus - Veneers
Veneers - Manufacture - Tests
Veneers - Gluing
Documents
Less detail

Optimization of veneer incising at the lathe

https://library.fpinnovations.ca/en/permalink/fpipub5539
Author
Dai, Chunping
Wang, Brad J.
Fu, F.
Date
August 1998
Edition
37474
Material Type
Research report
Field
Wood Manufacturing & Digitalization
V6T 1W5 Project No.: 1068 Optimization of Veneer Incising at the Lathe Chunping Dai Composites
Author
Dai, Chunping
Wang, Brad J.
Fu, F.
Date
August 1998
Edition
37474
Material Type
Research report
Physical Description
12 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer tenderizing
Veneer
Plywood manufacture
Plywood
Series Number
W-1502
Location
Vancouver, British Columbia
Language
English
Abstract
Further to the successful mill trial at Federated Co-operatives Limited in August 1995, a need to optimize the veneer lathe incisor and determine the benefits was identified. While the feasibility study was carried out directly at the mill, a majority of this work was conducted at the Forintek laboratory. During the early stages of this project, much effort was given to upgrade the Forintek 14-inch mini-lathe so that it could run with an incisor bar. Then an incisor bar assembly was fabricated for bar pattern tests. Finally, a series of tests were conducted to determine the optimum operation condition for an incisor bar and the effects of incising on veneer quality and recovery. The results showed that veneer is much flatter when peeled with a combination of incising and overdriving during peel. Species has a very strong effect on veneer flatness, especially spruce. Bar overdrive seems to be as equally important as incising. For the mini-lathe with which the tests were carried out, a 100.5% overdrive seems to yield the flattest veneer. Peeling speed and log conditioning has much less effect on veneer flatness than species and overdrive. Faster peeling speed and lower conditioning temperature seem to favour veneer flatness. According to the laboratory tests, veneer recovery can be increased by 5% from veneer stretching and flattening and reduction of spinout. An initial comparison also reveals that veneer peeled using an incisor bar may have less thickness variation and surface roughness. As a recommendation, further tests should be carried out to determine the effects of incising on other processing and performance properties such as pressing and bonding. The incising technology should be implemented in plywood mills, particularly in the softwood plywood mills, which use a big bar lathe, because an incisor bar can be easily retrofitted.
Incising
Veneers - Tenderizing
Plywood - Manufacture
Documents
Less detail

Panneaux dérivés du bois : rapport spécial.

https://library.fpinnovations.ca/en/permalink/fpipub42410
Contributor
Canada. Industrie Canada
Forintek Canada Corp.
Date
October 1998
Material Type
Research report
Field
Wood Manufacturing & Digitalization
Contributor
Canada. Industrie Canada
Forintek Canada Corp.
Date
October 1998
Material Type
Research report
Physical Description
129 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer
Technological innovation
Plywood
Particle boards
Canada
Series Number
E-4455
Location
Sainte-Foy, Québec
Language
French
ISBN
086488530X
ISSN
7068468
Abstract
Plywood industry - Canada
Particle board industry - Canada
Fiberboard industry - Canada
Veneer industry - Canada
Technological innovations - Canada
Environment
Documents
Less detail

Pilot plant evaluation of steam-injection heating for LVL and plywood products

https://library.fpinnovations.ca/en/permalink/fpipub37481
Author
Troughton, G.E.
Lum, Conroy
Date
July 1998
Material Type
Research report
Field
Wood Manufacturing & Digitalization
plywood and 13-ply SPF laminated veneer lumber (LVL) on a laboratory scale at Forintek and a pilot plant
Author
Troughton, G.E.
Lum, Conroy
Contributor
Science Council of British Columbia.
Date
July 1998
Material Type
Research report
Physical Description
21 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer drying
Veneer
Steam
Seasoning steam
Seasoning
Pressing
Press drying
Plywood manufacture
Plywood
Laminate product
Drying
Series Number
FRBC Research Award PA97296-1RE
W-1519
Location
Vancouver, British Columbia
Language
English
Abstract
The work presented in this report addresses the FRBC value-added research priority area and shows good potential for creating jobs in the forest products sector and leading to new technology for manufacturing a value-added product. Experiments were conducted to evaluate steam-injection pressing of 7-ply SPF plywood and 13-ply SPF laminated veneer lumber (LVL) on a laboratory scale at Forintek and a pilot plant scale at Alberta Research Council (ARC). The laboratory experiments provided a basis for the pressing schedules used in the pilot plant trials at ARC. The following parameters were necessary for the steam-injection pilot plant trials: Top and bottom screens (0.6 mm stainless steel 30-mesh screen), incised veneer and a phenolic glue (Borden 2020) resistant to washout. Using steam-injection technology in pilot plant trials, substantial reductions in pressing time were achieved both for 7-ply SPF plywood and 13-ply SPF LVL. Specifically, a steam-injection time of one minute using saturated steam at 80 psi reduced the pressing time of 7-ply SPF plywood by 27% compared to conventional platen pressing. A steam-injection time of eight minutes using saturated steam at 80 psi reduced the pressing time of 13-ply SPF LVL by 32% compared to conventional platen pressing. Both the control and steam-injected 7-ply SPF plywood and 13-ply SPF LVL panels exhibited excellent bond quality and the average percentage wood failure was much greater than 80% in all cases thereby meeting the average percentage wood failure requirement in the CSA 0151 plywood standard. There was no significant difference in shear strength between control and steam-injected shear specimens. There was no statistical difference in average modulus of elasticity or modulus of rupture under flatwise and edgewise bending for the steam-injected LVL compared to the control LVL made using conventional platen pressing. A previous economic analysis of return on investment for thick plywood products and LVL showed that a 30% reduction in pressing time for a medium-size manufacturing plant would generate an additional profit of $3,000,000 per year.
Veneers - Drying - Tests
Seasoning - Steam
Seasoning - Incising
Seasoning - Press drying
Lumber, Laminated veneer - Pressing
Lumber, Laminated veneer - Manufacture
Plywood - Manufacture
Plywood - Pressing
Documents
Less detail

Pressing optimization using self-generated steam in thick veneer panel products

https://library.fpinnovations.ca/en/permalink/fpipub37477
Author
Troughton, G.E.
Date
April 1998
Material Type
Research report
Field
Wood Manufacturing & Digitalization
Veneer Pan î Products by G. E. Troughton Composites Research Scientist Composites & Treated Wood
Author
Troughton, G.E.
Date
April 1998
Material Type
Research report
Physical Description
13 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer manufacturing
Veneer
Pressing
Plywood manufacture
Plywood
Panels
Laminate product
Series Number
W-1513
Location
Vancouver, British Columbia
Language
English
Abstract
Experiments were conducted to evaluate pressing of plywood and LVL using self-generated steam. For the 13-ply SPF LVL experiments, the average moisture content (avg. m.c.) in the outermost incised veneers was varied from 10 to 14% and for the 15-ply aspen LVL experiments the avg. m.c. was varied from 8 to 12%. For the 7-ply SPF plywood experiments, the avg. m.c. in the outermost incised veneers was 10 and 15%. In these experiments the controls and core incised veneers were 2% avg. m.c. Using the highest avg. m.c. in the outermost incised veneers, the pressing time for 13-ply SPF LVL was reduced by 31.1% and for 15-ply aspen LVL, 30.8 % and for 7-ply SPF plywood, 38.7%, compared to conventional hot platen pressing. The results showed that small changes in the avg. m.c. of the outermost veneers had a large effect on pressing time. Therefore, careful control of veneer m.c. under mill conditions would be very important. All the panels prepared under a variety of self-generated steam conditions exhibited excellent bond quality and the average % wood failure was much greater than 80% in all cases, thereby meeting the average % wood failure requirement in the CSA 0151 plywood standard. An economic analysis of return on investment for thick plywood products and LVL using self-generated steam pressing showed that a manufacturing plant would make a profit of about $3,000,000 per year.
Lumber, Laminated veneer - Pressing
Lumber, Laminated veneer - Manufacture
Veneers - Pressing
Veneers - Manufacture
Plywood - Panels - Pressing
Plywood - Manufacture
Documents
Less detail

Termite-resistant veneer-based products

https://library.fpinnovations.ca/en/permalink/fpipub37479
Author
Andersen, Axel W.
Date
June 1998
Material Type
Research report
Field
Wood Manufacturing & Digitalization
Author
Andersen, Axel W.
Date
June 1998
Material Type
Research report
Physical Description
17 p.
Sector
Wood Products
Field
Wood Manufacturing & Digitalization
Research Area
Advanced Wood Manufacturing
Subject
Veneer
Termites
Preservatives boron
Preservatives
Preservation
Series Number
W-1515
Location
Vancouver, British Columbia
Language
English
Abstract
Two methods of adding borate compounds to plywood panels were investigated. One method was patterned after successful efforts to incorporate zinc borate into OSB panels, where the borate is added to the adhesive. Zinc borate, which has shown some success in OSB, was however not sufficiently soluble and was replaced with a sodium borate. Method two involved the more traditional approach in pressure-treating wood veneers with a borate solution. A commercial borate compound (Timbor®) was used. The treatment target in each case was 2 % boric acid equivalent (BAE), which is the normal level being applied to solid wood. Borate addition to the adhesive was not successful for plywood due to the high level of borate required relative to the adhesive quantity. Treating of wood veneers prior to bonding yielded better panel bond quality results but showed large variation in borate retention levels within and between veneers. Treatment at the 2 % BAE target level did not produce panels with adequate bond quality. Treatment to 1 % BAE showed more promise but there were insufficient panels at the lower BAE level to allow for any evaluation of termite resistance.
Termites - Control
Preservatives - Boron - Tests
Veneers - Preservation
Documents
Less detail

8 records – page 1 of 1.