Passer en-tête et de la navigation

4 notices – page 1 de 1.

Increasing adhesive choices in engineered wood products that meet market requirements

https://library.fpinnovations.ca/fr/permalink/fpipub41381
Auteur
Pirvu, Ciprian
Date
March 1907
Genre du document
Research report
Domaine
Sustainable Construction
Auteur
Pirvu, Ciprian
Collaborateur
Alberta Forestry Research Institute
Date
March 1907
Genre du document
Research report
Secteur
Wood Products
Domaine
Sustainable Construction
Champ de recherche
Building Systems
Sujet
Materials
Adhesives
Série
W-2481
Localisation
Vancouver, British Columbia
Langue
English
Résumé
Test results for three representative adhesives were obtained for use in the development of a proposed standard for limited moisture exposure (CSA O112.10). The adhesives tested were an emulsion polymer isocyanate (EPI), a polyurethane (PUR) and a melamine-urea formaldehyde with 40% melamine resin content (MUF40). Currently, EPI and PUR are used for I-joists and fingerjoined lumber. MUF40 was included in the study as a non-conforming adhesive. The range of performance of these adhesives, along with that of melamine formaldehyde (MF) and polyvinyl acetate (PVA) evaluated in a previous study, is baseline information used in defining acceptable performance levels for adhesives undergoing block shear tests required in the proposed standard. Specimens in this study were evaluated under five test conditions: dry, vacuum-pressure wet or re-dried, and three-cycle boil-dry-freeze wet or re-dried. Dry and re-dried test conditions are the proposed test protocols for the draft CSA O112.10 standard. In terms of shear strength and percentage of wood failure, EPI and MUF40 met the requirements of CSA O112.9 for the dry test condition, and PUR did not. The following block shear test requirements are recommended for CSA O112.10, based on the 95% lower confidence limit of the EPI test results, and structured to be analogous to the requirements of CSA O112.9:
Median dry shear strength = 10 MPa (1450 psi) (adopted from CSA O112.9);
Vacuum-pressure re-dried median shear strength = 7.4 MPa (1070 psi);
Three-cycle boil-dry-freeze re-dried median shear strength = 4.4 MPa (640 psi);
Median percentage wood failure = 85% for all the proposed tests (adopted from CSA O112.9); and
Lower quartile percentage wood failure = 75% for all the proposed tests (adopted from CSA O112.9). The above requirements will be discussed in the CSA Task Group, which will eventually make recommendations to the CSA Standards Committee.
Adhesion and Adhesives - Composite Materials
Documents
Moins de détails

Load duration test protocols for engineered wood products

https://library.fpinnovations.ca/fr/permalink/fpipub37951
Auteur
Pirvu, Ciprian
Date
March 2009
Genre du document
Research report
Domaine
Sustainable Construction
Auteur
Pirvu, Ciprian
Collaborateur
Canada. Canadian Forest Service.
Date
March 2009
Genre du document
Research report
Description physique
12 p.
Secteur
Wood Products
Domaine
Sustainable Construction
Champ de recherche
Building Systems
Sujet
Mechanical properties
Materials
Building construction
Série
Canadian Forest Service No. 4
W-2653
Localisation
Vancouver, British Columbia
Langue
English
Résumé
The objective of the project is to develop/improve practical, reliable and internationally recognized methods for assessing/pre-screening the long-term structural performance of engineered wood products used in residential and non-residential applications.
Building construction - Materials used - Strength
Documents
Moins de détails

NSERC innovation : hybrid structural wood composites for non-residential construction

https://library.fpinnovations.ca/fr/permalink/fpipub41325
Auteur
Pirvu, Ciprian
Date
March 2005
Genre du document
Research report
Domaine
Sustainable Construction
Auteur
Pirvu, Ciprian
Collaborateur
Natural Sciences Engineering Research Council
Date
March 2005
Genre du document
Research report
Description physique
10 p.
Secteur
Wood Products
Domaine
Sustainable Construction
Champ de recherche
Building Systems
Sujet
Mechanical properties
Research
Physical properties
Materials
Série
W-2197
Localisation
Vancouver, British Columbia
Langue
English
Résumé
In recent years, significant attention has been paid to the engineering performance of wood structural systems, and a new generation of more reliable engineered wood components for building construction has evolved. The latest trend is towards advanced products that combine wood and synthetics. This increases performance and structural reliability of engineered wood products, and leads to new markets and expanded opportunities. It is anticipated that cost of fibre reinforcement decreases over time and advances developed on reinforcing techniques and methods of evaluation would provide wood producers with more options to better position their products in the marketplace. A new reinforcing technique has been developed and applied to manufacture a hybrid wood product for structural applications. The technique involves a layering analogy using layers of synthetic reinforcement sandwiched between layers of wood composite. The products manufactured in the laboratory used regular OSB laminations and alternating layers of E-glass fabrics and resin. Three- and four-ply billets were manufactured with various layouts and then tests were conducted to characterize mechanical properties of the hybrid products. Overall, the test specimens performed well relative to the controls. Shear failures were observed as a result of the limited performance of OSB in shear, and consequently the next tests will be conducted with plywood laminations instead of OSB. Selected issues related to code acceptance of structural FRP-reinforced wood products are discussed in the appendix. Future work is suggested to completely characterize and understand the properties and behaviour of the FRP-reinforced wood products, including fire performance, long term durability, maintenance and cost, in order to establish an environment in which to work comfortably with such materials. Overcoming these issues is vital for product acceptance in building codes.
Composite materials - Physical properties
Composite materials - Research
Composite materials - Strength
Documents
Moins de détails

State-of-the-art report on fibre reinforced polymer (FRP) utilization in wood products

https://library.fpinnovations.ca/fr/permalink/fpipub41302
Auteur
Pirvu, Ciprian
Date
June 2004
Genre du document
Research report
Domaine
Sustainable Construction
Auteur
Pirvu, Ciprian
Date
June 2004
Genre du document
Research report
Description physique
35 p.
Secteur
Wood Products
Domaine
Sustainable Construction
Champ de recherche
Advanced Wood Materials
Sujet
Materials
Série
W-2073
Localisation
Vancouver, British Columbia
Langue
English
Résumé
Fibre-reinforced wood systems are light, strong, stiff composites that can efficiently replace larger wood members and can be relied on to provide consistent mechanical properties. This report is an introduction to fibre-reinforced wood systems for members of the Canadian wood products industry. It provides the motivation for reinforcing wood with synthetic fibres, and surveys the choice of materials and their uses. Numerous examples of current applications are discussed to demonstrate the strong and weak points of various approaches and examine the durability and management of fibre-reinforced wood products, as well as to indicate opportunities that exist for the Canadian wood products industry. This report is intended to be a useful reference for the Canadian wood products industry, and assist future developments in structural and non-structural applications of fibre-reinforced wood products.
Composite materials - Durability
Fibres
Board products - Materials used
Documents
Moins de détails