The North American product standard for performance-rated cross-laminated timber (CLT), ANSI/APA PRG 320, was published in 2012. The standard recognizes the use of all major Canadian and US softwood species groups for CLT manufacturing and provides design properties for specific CLT layups with visually graded and E-rated/MSR laminations. While design properties for CLT layups with Spruce-Pine-Fir and Douglas fir-Larch laminations are specified in the current standard, no design properties are indicated for CLT layups with Hem-Fir laminations.
Design properties for two proposed CLT grades manufactured with Hem-Fir lumber were developed. These include a CLT layup with visually graded laminations and another layup with E-rated/MSR laminations. Design properties for these two CLT layups were calculated separately for use in Canada and the US.
Supporting information for the addition of design properties for Hem-Fir grades to the CLT product standard was generated. Recommended amendments to the CLT product standard include durability and wood failure requirements of bondlines, and design properties for Hem-Fir layups.
This report describes the building, tested floor and wall assemblies, test methods, and summarizes the test results. The preliminary performance data provides critical feedback on the design of the building for resisting wind-induced vibration and on the floor vibration controlled design. The data can be further used to validate the calculation methods and tools/models of dynamic analysis. Originally confidential to FII, they have provided permission to make the report available.
Fibre-reinforced wood systems are light, strong, stiff composites that can efficiently replace larger wood members and can be relied on to provide consistent mechanical properties.
This report is an introduction to fibre-reinforced wood systems for members of the Canadian wood products industry. It provides the motivation for reinforcing wood with synthetic fibres, and surveys the choice of materials and their uses. Numerous examples of current applications are discussed to demonstrate the strong and weak points of various approaches and examine the durability and management of fibre-reinforced wood products, as well as to indicate opportunities that exist for the Canadian wood products industry.
This report is intended to be a useful reference for the Canadian wood products industry, and assist future developments in structural and non-structural applications of fibre-reinforced wood products.