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1. INTRODUCTION 

Recent advances in ubiquitous sensing, such as accessible, wearable sensing technology and the 
emerging field of big data analytics have sparked the current wave of interest in self-tracking by means 
of personal wearable devices that quantify everyday activities and improve behaviours and processes. 
This trend is quickly extending into the workplace: It is estimated that by 2020, over 75 million wearable 
devices will be used in the workplace (Kaul and Wheelock, 2016). In this context, knowledge extracted 
from pervasive sensor data can lead to improvements in the health and productivity of workers and to 
gains in data-driven operational efficiency across a wide spectrum of sectors. 

Most wearable sensing systems used for activity tracking make use of human activity recognition (HAR) 
technology linked to a variety of sensors for measuring acceleration, environmental attributes, location, 
physiological signals, etc. HAR is a detection, recognition and classification problem and as such it is 
best handled by machine learning tools that are able to analyze, recognize and predict patterns in large 
data sets. In particular, classifier algorithms are used in activity recognition to analyze data sets and 
predict to which category (i.e., activity, in this case) a new instance (i.e., time unit) belongs to. Classifier 
algorithms commonly used in activity recognition applications include decision trees (e.g., ID3, C4.5, 
CHAID), Bayesian methods (e.g., Bayesian networks, Naïve Bayes), neural networks and 
instance-based learning, among others. Of these algorithms, decision trees produce the most intuitive 
models, have the lowest computation costs and tend to be the most accurate tools for 
activity-recognition problems (Lara & Labrador, 2013). 

This study explores HAR with wearable sensors in the context of manual silvicultural operations. The 
objective of this study was to develop an activity predictive model capable of recognizing specific 
activities performed by silvicultural workers. Data were collected from a variety of sensors located on 
silvicultural workers’ bodies for two operational scenarios: Manual tree planting work and manual 
pre-commercial thinning work. The C4.5 and CHAID (chi-square automatic interaction detector) 
decision tree algorithms were used to develop both models. This work will provide the basis for the 
development of a wearable sensor system that can track a worker’s physical motions and physiological 
signals and provide activity and productivity information to the worker. 

Applications for such a tool range from enabling cost-effective time and productivity studies, to 
providing a tool that helps tree planters become more aware of their work habits, regulate their 
performance and prevent injuries by monitoring the planter’s biometric data linked to specific work 
duties. On a larger scale, the concept could also be further developed to streamline reforestation 
operations by providing information about the spatial location of individual seedlings. This info would 
help in estimating actual planting density and in identifying missed (unplanted) areas or tree-stashing 
problems in a timely manner.  

2. METHODOLOGY 

Data collection 
Data were collected from silvicultural workers in two operational scenarios: Tree planting and 
pre--commercial thinning.  
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For the tree planting scenario, heart rate (bpm), speed (m/min) and motion (g) were measured for 
eleven tree planters over the course of three days in naturalistic conditions and without researcher 
intervention. Heart rate and location data were collected every 1 sec with a Garmin GPSMAP 62s unit 
connected to a Garmin heart rate monitor chest band (Figure 1). Each planter’s resting heart rate was 
measured to establish a baseline and provide a measure of fitness and to allow comparisons between 
planters. Speed and distance were calculated from the GPS data.  

Motion was measured with a GDC X16-1D 
±16g triaxial accelerometer positioned on 
each tree-planter’s back, secured to the 
back strap of the planting bag. While 
wrist-worn devices would improve ease of 
use and length of wear time, the back was 
chosen in this study since activity 
recognition from wrist-worn sensors 
presents challenges due to the high 
variability of movement of the limbs (Zhang, 
et al., 2012, Mannini, et al., 2013). This is 
particularly the case with tree planters 
because many of them are ambidextrous 
when using planting shovels. The 
accelerometer collected data at a sampling 

rate of 25 Hz or 25 records per second. The accelerometer sampling rate was based on work by 
Maurer et al. (2006) who found that no significant gains in accuracy are obtained with frequencies 
over 20 Hz.  

The activity at each instance or time point was labelled manually. Three main physical activities 
associated with tree planting were identified and used in model training: Preparation work, walking and 
planting. Preparation work is an umbrella term that includes light work (e.g., preparing gear prior to 
planting), refilling planting bags at the tree cache and resting.  

For the pre-commercial thinning scenario, heart rate, speed, distance (m) and sound intensity (dB) 
were measured for five workers. Data collection for pre-commercial thinning operations was conducted 
in a different way due to the nature of the work duties: A data-logging sound-level meter from Reed 
Instruments (model IA799) was used instead of an accelerometer in order to capture the sound of 
working brush saws. Sound intensity, heart rate and GPS location were measured every 10 sec. Two of 
the workers lacked sound intensity measurements and were excluded from the data set during model 
development. Speed and distance were calculated from the GPS data. The physical activities observed 
and included in the model and in the training data set were: Thinning, moving, resting, performing 
maintenance tasks (e.g., fuelling) and preparing to work. However, due to the poor differentiation in 
heart rate and speed between these activities, they were simplified into productive (thinning) time and 
non-productive (not thinning) time. 

 
Figure 1. Instruments used for data collection 

Accelerometer, heart rate chest band, GPS unit and sound 
level meter 
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Data Processing and Feature Extraction 
Accelerometer data required further pre-processing before it could be used as input for model training 
and development. Figure 2 shows raw acceleration data and the different acceleration patterns for each 
of the three physical activities in the tree planting scenario. To extract pattern information from the raw 
data, several statistical features were calculated from 1-sec non-overlapping time windows (equivalent 
to 25 acceleration records). A variety of window lengths, ranging from 1 to 30 sec (Lara & Labrador, 
2013), have been used successfully in activity recognition problems, but Banos et al. (2014) 
recommend a window length of 1 to 2 sec for recognition speed and accuracy of whole-body activities, 
such as walking or planting. 

The following 13 features were extracted from the acceleration signals: 

 Mean acceleration in each axis (e.g., x, y and z) 
 Standard deviation of acceleration in each axis (e.g., x, y and z) 
 Average absolute difference between individual acceleration signals and time window average 

for each axis 
 Average resultant acceleration, measured as the time window average of the root sum squared 

of all axis 
 MinMax value for each axis, defined as the difference between maximum and minimum 

acceleration signals on each time window 

These features were used as independent variables in the development of the tree planting model. 
Other variables used to build the model were: Speed, heart rate, heart rate at rest and effort as 
measured by the difference between heart rate and heart rate at rest for each tree planter. For the 
pre-commercial thinning model, the only independent variables used were sound intensity, heart rate, 
speed and distance covered. 

 
Figure 2.  Sample acceleration signals show differences in signal structure 

during the three physical activities in the tree planting scenario: preparation work, walking, and planting 
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Classification Algorithm 
The C4.5 and CHAID decision tree algorithms were used to build an exploratory decision tree to predict 
which activity a worker was undertaking (i.e., preparation work, walking or planting) given a set of 
independent variables (i.e., heart rate, speed, etc.).  

In order to classify an instance into the most likely activity class, a decision tree identifies the most 
significant independent variable and the best way to split it. In a decision tree, each node denotes a test 
on a variable and each leaf holds a homogeneous set of the population with an assigned predicted 
category. C4.5 remains the most popular decision tree algorithm in HAR classification problems and 
while CHAID is not often used in the context of activity recognition, it can use the same type of data and 
produce similar outputs (Arentze, et al., 2000). CHAID studies the relationship between a dependent 
variable and independent or predictor variables and uses a chi-square independence test for splitting 
nodes. By contrast, C4.5 uses information gain, or decrease in entropy, as the splitting criterion. The 
data-mining software called Sipina Research (version 3.12) was used to create the decision trees. 

The performances of the decision trees were then evaluated in terms of overall accuracy when 
predicting activities and F-measure for each activity class. F-measure is a classifier evaluation metric 
ranging from 0 to 1, where 1 means perfect activity prediction. It combines precision (ratio of correctly 
classified positive instances to the total number of instances classified as positive) and recall (ratio of 
correctly classified positive instances to the total number of positive instances) in a single value: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) 

3. RESULTS 

The tables in Appendix 1 summarize the data used in the model after data processing. Five planters 
chose to wear the planting bag without using the shoulder straps and so, these planters were excluded 
from the analysis. Similarly, all records with missing heart rate, sound or location data were deleted 
from both data sets. The data for each subject was then aggregated for model construction. 

A five-fold cross-validation method was applied to train and test both algorithms for both data sets 
independently. In this method the data set is divided into five equal-sized subsamples. The classifier 
then runs for five iterations, using each of the subsamples for model testing at a time, while the 
remaining subsamples are used for training. The resulting prediction accuracy is then averaged and a 
confusion matrix is constructed.  

The tables in Appendix 2 show the performance of the two decision tree algorithms for both scenarios 
(i.e., tree planting and pre-commercial thinning), and they show the confusion matrix that resulted from 
the cross validation exercise. The confusion matrix shows, for the total number of instances (i.e., 
seconds), what the actual activity was during those seconds vs. what the model predicted the activity to 
be. Appendix 3 provides a visual example of a C4.5 decision tree for pre-commercial thinning. 
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4. DISCUSSION 

The best accuracy when predicting tree planting activities was 
achieved using the C4.5 classifier: The model could predict tree 
planter activity with 91.51% accuracy (i.e., only 4.22 h of the 
total 49.69 h were misclassified) (Appendix 2). But while C4.5 
was better at predicting the activity, it had a much more 
complex tree architecture (Table 1) than the CHAID tree due to 
the latter’s ability to control maximum tree depth. The tree 
planting confusion matrix shows that most of the error in both 
algorithms stemmed from a high proportion of walking 
instances being misclassified as planting, possibly due to 
uneven terrain and/or because the exercise effort level and 
ground speed for walking are similar to that of planting.  

Prediction accuracies were higher in the pre-commercial thinning scenario for both classification 
algorithms (93.82% using CHAID and 94.15% using C4.5), thanks to the use of sound intensity as a 
variable. Sound intensity was significantly higher when brush saws were working than during 
unproductive time. A sound-level meter is therefore a key sensor to be included in the development of a 
wearable system for pre-commercial thinning workers. 

Further exploration of feature sets, window lengths and machine learning algorithms could result in 
better prediction accuracies. Acceleration features used successfully in previous work that could be 
explored with our data set include energy, correlation and kurtosis, among others (Bao & Intille, 2004; 
Ravi et al., 2005). Similarly, a host of different algorithms other than decision trees and combinations of 
algorithms have proven to have high success rates in activity recognition problems (Ravi et al., 2005; 
Bayat, et al., 2014; Lu, et al. 2016). Future work in feature and algorithm selection should focus on 
differentiating between planting and walking activities.  

One study weakness to note is the lack of diversity in research subjects, particularly in the tree planting 
scenario. Data were collected for subjects of different ages and sexes but some subjects had to be 
dropped during the analysis because they wore the straps of their planting bag off their shoulders and 
on their hip instead of in the required position of across the back. Further model refinement could still 
be possible by obtaining more data from a wider range of subjects in both scenarios. 

5. CONCLUSION 

This study proved that automatic activity recognition with wearable sensors is possible in tree planting 
and pre-commercial thinning operations. The data obtained during this project could be used as a 
starting point to develop an activity recognition system with 91.51% recognition accuracy for tree 
planting and 94.15% recognition accuracy for pre-commercial thinning operations. Further research 
could help refine the concept and achieve higher accuracies by testing different feature sets and 
algorithms. Such refinement would give way to more detailed outputs, such as providing the exact time 
planters spend bending over to plant, which in turn would allow for more detailed time studies and 
better performance tracking.  

Table 1.  Decision tree architecture 

Architecture a 
Algorithm 

C4.5 CHAID 

Nodes (no.) 1793 333 

Leaves (no.) 897 167 

Min. leaf size (no. 
instances) 

10 10 

Tree depth  36 10 

Accuracy (%) 91.53 90.09 
a For a single sample tree, using 80% of data as 
training data and 20% as testing data. 
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7. APPENDICES 

APPENDIX 1. SUMMARY OF DATA USED FOR MODEL CONSTRUCTION: 
TREE PLANTING AND PRECOMMERCIAL THINNING 
SCENARIOS 

Tree planting data set 

  Tree planter 
 

Total time  
(h) 

Breakdown of time spent in each activity  

Preparation 
(%) 

Walking 
(%) 

Planting 
(%) 

TPS1 7.94 19.2 8.7 72.1 

TPL1 7.91 35.0 7.8 57.2 

TPM2 7.97 32.4 12.4 55.2 

TPJ1 6.48 40.3 9.1 50.6 

TPG1 10.82 25.0 13.1 61.9 

TPM1 8.57 13.6 3.4 83.0 

    Total 49.69    

 

 

Pre-commercial thinning data set 

  Thinning worker 
 

Total time  
(h) 

Breakdown of time spent in each activity 

Unproductive 
(%) 

Productive 
(%) 

PCTM1 3.39 29.5 70.5 

PCTS1 5.15 28.3 71.7 

PCTS2 5.12 35.0 65.0 

    Total 13.66   
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APPENDIX 2. CONFUSION MATRIX AND EVALUATION METRICS FOR TWO 
CLASSIFICATION ALGORITHMS PREDICTING 
TREEPLANTING AND PRECOMMERCIAL THINNING 
ACTIVITIES 

Tree planting data set a 

Decision tree algorithm  
 

Predicted activity 

F-measure 
 

Total prediction 
accuracy  

(%) 
Preparation 

 
Walk 

 
Plant 

 

C4.5 

Ac
tu

al
 

ac
tiv

ity
 Preparation 6189 93.6 469.8 0.92 

91.51 Walk 160.0 1286.4 804.4 0.66 

Plant 316.4 278.4 15411.2 0.94 

CHAID 

Ac
tu

al
 

ac
tiv

ity
 Preparation 7059.8 90.8 566.6 0.92 

91.37 Walk 211.2 1300.2 1061.0 0.62 

Plant 336.6 199.4 17756.6 0.94 
a White boxes: Number of instances (seconds) that were correctly classified. Grey boxes: Instances (seconds) that were 
incorrectly classified. 
 

Pre-commercial thinning data set b 

Decision tree algorithm 
 

Predicted activity 
F-measure 

Total prediction 
accuracy 

(%) 
Unproductive 

 
Productive 

 

C4.5 

Ac
tu

al
 

ac
tiv

ity
 

Unproductive 222 21.8 0.90 
93.82 

Productive 26.8 516 0.95 

CHAID 

Ac
tu

al
 

ac
tiv

ity
 

Unproductive 221.4 22.4 0.91 
94.15 

Productive 23.6 519.2 0.96 
b White boxes: Number of instances (seconds) that were correctly classified. Grey boxes: Instances (seconds) that were 
incorrectly classified. 
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APPENDIX 3. EXAMPLE OF A C4.5 DECISION TREE FOR CLASSIFICATION 
OF PRECOMMERCIAL THINNING PRODUCTIVITY 
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